Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH và ΔACH, ta có :
AB = AC(gt)
BH = HC(vì H là trung điểm đoạn thẳng BC)
AH là cạnh chung
⇒ΔABH = ΔACH ( c.c.c )
⇒ Góc BAH = góc CAH (2 góc tương ứng)
⇒AH là tia phân giác của góc BAC
b)Xét ΔAHB và ΔKHC, ta có :
AH = HK ( gt)
BH = HC ( H là trung điểm )
góc AHB = góc KHC ( đối đỉnh )
⇒ΔAHB = ΔKHC ( c.g.c )
⇒AB//CK ( 2 cạnh tương ứng )
xong rồi chúc bn học tốt nhé !
nhớ tick cho mình nha An Binnu
xin lỗi nha tớ vẽ hình ko được đẹp ///=///, //=//,/=/
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
Tớ chỉ có thể trả lời 2 câu thôi( câu c tớ bó)
a.tg ABM va tg NMC có:
AB=MC(M là trung điểm)
AM=MN(M là trung điểm)
góc AMB=NMC(đối đỉnh)
suy ra:tg AMB=NMC(cgc)
b.có tg ABM=NMC(theo câu a), suy ra:góc ABC=góc BCN(2 góc tương ứng) suy ra AB//CN suy ra:góc BDC=góc DCN=90 độ
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
a) \(\Delta AHB\)và \(\Delta KHB\)có:
\(\widehat{AHB}=\widehat{KHB}\)(vì \(AK\perp BC\)tại H)
BH: cạnh chung
AH = HK (theo gt)
Do đó:\(\Delta AHB=\Delta KHB\left(c.g.c\right)\)
b) \(\Delta AHC\)và \(\Delta KHC\)có:
\(\widehat{AHC}=\widehat{KHC}\)(vì \(AK\perp BC\)tại H)
CH: cạnh chung
AH = HK (theo gt)
Do đó:\(\Delta AHC=\Delta KHC\left(c.g.c\right)\)
Suy ra: AC = KC (cặp cạnh tương ứng)
c) Ta có: \(\widehat{ACH}=\widehat{KCH}\)(do \(\Delta AHC=\Delta KHC\))
Mà tia CB nằm giữa hai tia CA và CK
Do đó: CB là tia phân giác của \(\widehat{ACK}\)