Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét 2 tam giác vuông ABC và HAC có:
\(\widehat{C}\) chung
=> tg ABC \(\sim\) td HAC (g.g)
=> \(\widehat{ABC}=\widehat{HAC}\)
b)
Xét 2 tg vuông ACB và HAB có:
\(\widehat{B}\) chung
=> tg ACB \(\sim\) tg HAB (g.g)
=> \(\widehat{ACB}=\widehat{HAB}\)
hình Imgur: Sự kỳ diệu của Internet : https://imgur.com/a/OpRrWs8
a) nhìn hình cũng đủ thấy \(\Delta ABC>\Delta ACH\)
hai tam giác không tương ứng
\(\Delta ACH=\frac{1}{2}\Delta ABC\)
thực chất mình cũng không biết cách cm nó k bằng nhau :3
b) Vì H là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\widehat{H_1}=\widehat{H_2}\)( 2 góc kề bù mà H là tia phân giác )
\(\Rightarrow\widehat{H_1}+\widehat{H_2}=180^o\)
\(\Rightarrow2H_1=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)(1)
c) gọi I là trung điểm của cạnh DE
cm giống như trên
\(\Rightarrow AI\perp DE\)(2)
Từ (1) và (2) ta có :
\(\Rightarrow\hept{\begin{cases}AH\perp BC\\AI\perp DE\end{cases}}\)
=> DE // BC
\(I\in AH\)nên vẫn có thể cm theo kiểu đó maybe ....
không chắc đâu:)
MK cần bạn vẽ hình để giải được câu b và c nhé
Ta có AB vuông AC; EK vuông AC Nên AB song song với EK
=> goc BAE= goc AEK (1) ( hai góc so le trong)
Lại có góc BAE= góc BEA (2) ( do tam giác ABM= tam giác EBM chứng minh ở câu a)
(1)(2)=> góc AEB = góc AEK
c.
Xét \(\Delta AEH\)và \(\Delta AEK\)
\(H=K\)
Chung \(AE\)
\(\Rightarrow\Delta AEH=\Delta AEK\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AK\\HAE=KAE\end{cases}}\)
Gọi giao điểm giữa HK và AE là N
Xét \(\Delta AHN\)và \(\Delta AKN\)
\(AH=AK\left(cmt\right)\)
\(HAN=KAN\left(cmt\right)\)
Chung \(AN\)
\(\Rightarrow\Delta AHN=\Delta AKN\left(c.g.c\right)\Rightarrow AMH=AMK\Rightarrow2AMH=AMK+AMH=180\Rightarrow AMH=90\)
Vậy \(AE\perp HK\)tại \(N\)
b: Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
Suy ra: IA=IK
c: Ta có: ΔBAI=ΔBKI
nên \(\widehat{BAI}=\widehat{BKI}=90^0\)
=>KI\(\perp\)BC
hay KI//AH
\(\widehat{ANI}=\widehat{BNH}=90^0-\widehat{CBI}\)
\(\widehat{AIN}=90^0-\widehat{ABI}\)
mà \(\widehat{CBI}=\widehat{ABI}\)
nên \(\widehat{ANI}=\widehat{AIN}\)
d: Xét ΔBAE có
BH là đường cao
BH là đường trung tuyến
Do đó:ΔBAE cân tại B
=>BA=BE
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
Xét ΔBAC và ΔBEC có
BA=BE
CA=CE
BC chung
Do đó: ΔBAC=ΔBEC
Suy ra: \(\widehat{BAC}=\widehat{BEC}=90^0\)
=>BE\(\perp\)EC