Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có: tam giác ABC cân tại A
=>AB=AC
Xét tam giác AHB và tam giác AHC có:
góc AHB=góc AHC=90 độ
AB=AC(cmt)
AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
(bít lm mỗi câu a, thông cảm)
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MH là phân giác của góc BMC
c: ΔMHB vuông tạiH
=>góc BMH<90 độ
=>góc BMA>90 độ
=>BA>MB
Ta có: BAHˆ+AHBˆ+HBAˆ=1800
HACˆ+ACHˆ+CHAˆ=1800
mà AHBˆ=CHAˆ=900
HBAˆ=ACHˆ ( vì tam giác ABC là tam giác cân)
⇒BAHˆ=HACˆ (đpcm)
c) Xét ΔAEH và ΔADH, ta có:
AEHˆ=ADHˆ(900)
AH chung
EAHˆ=DAHˆ ( câu a)
⇒ΔAEH=ΔADH ( cạnh huyền - góc nhọn)
⇒AE=AD ( 2 cạnh tương ứng)
d) Gọi I là giao điểm của AH và ED
Vì ΔAEH=ΔADH nên
DHAˆ=EHAˆ ( 2 góc tương ứng)
HE=HD ( 2 cạnh tương ứng)
Xét ΔIEH và ΔIDH, ta có:
HE=HD (cmt)
DHAˆ=EHAˆ (cmt)
IH chung
⇒ΔIEH=ΔIDH (c-g-c)
⇒EIHˆ=DIHˆ ( 2 góc tương ứng)
Ta có: EIHˆ+DIHˆ=1800 ( kề bù)
⇒EIHˆ=DIHˆ=18002=900
hay IH⊥ED
Ta có: AH⊥BC mà I∈AH⇒IH⊥BC
Vì IH⊥BC mà IH⊥ED⇒BC//ED (đpcm)
bạn rảnh vcl bạn đi hỏi mà tự làm để mọi người cho đúng là rảnh hơi.
1. Ta thấy tam giác DEC Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau
Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác DIA, DIE bằng nhau [1]
Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]
Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau
=> Hai tam giác ABD , DEC bằng nhau
=> Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.
Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau
=> Tam giác AEC = 360 : 2 = 180 [cm2 ]
Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD
=> Tam giác AED = \(\frac{1}{3}\)tam giác AEC
=> Tam giác AED = \(\frac{1}{3}\) x 180
= 60 [cm2]
Từ [1] ta thấy diện tích tam giác ADI = \(\frac{1}{2}\) tam giác ADE
=>ADI = 60 x \(\frac{1}{2}\)
=> ADI = 30 [cm2]
Vậy diện tích tam giác ADI = 30 cm2
Giải
1)
2)
a) Gọi A là đáy, H là chiều cao
Theo đề bài ta có:
\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\) = \(\frac{H}{3}\)
\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)
Vậy A = H x 4
Thế A vào thì ta có:
\(\frac{Hx4xH}{2}\) = 72
\(Hx4^2\) = 144
\(H^2\) = 144 : 4
\(H^2\) = 36
\(H^2\) = 6 x 6
H = 36
Thế H vào thì ta có:
\(\frac{Ax6}{2}\) = 72
A x 6 = 72 x 2
A x 6 = 144
A = 144 : 6
A = 24
b)
Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).
Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)
Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).
Do S(AMN) + S(MNC) = S(AMC)
Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.
Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2).
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a: HB=HC=căn 10^2-8^2=6cm
b: Xét ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD can tại B
khó nhỉ