K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)

\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)

\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)

\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)

\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)

\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)

\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\)  \(trung\) \(điểm\) \(BC)\)

\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)

6 tháng 10 2020

mk bận đi ch nên chỉ tạm câu a nha 

vẽ 3 đường trung tuyến AD ; BE ; CF 

VT = 

\(GA+GB+GC\)   ( nhớ thêm dấu vec tơ nha ) 

\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)  

\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\)     ( quy tắc hình bình hành ) 

\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\) 

\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)    

\(=0=VP\)

6 tháng 10 2020

.... chua hoc

NV
27 tháng 7 2021

Gọi M là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà I là trung điểm AG \(\Rightarrow\overrightarrow{IG}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AM}\Rightarrow\overrightarrow{GI}=-\dfrac{1}{3}\overrightarrow{AM}\)

Lại có: M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

Nên ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}+6\overrightarrow{GI}=\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{AM}+\overrightarrow{MC}+6.\left(-\dfrac{1}{3}\right)\overrightarrow{AM}\)

\(=2\overrightarrow{AM}-2\overrightarrow{AM}=\overrightarrow{0}\) (đpcm)

24 tháng 8 2019

A B C G I J

a) \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{BA}+3\overrightarrow{IB}=\overrightarrow{0}\Rightarrow\overrightarrow{BI}=\frac{1}{3}\overrightarrow{BA}\)

\(\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CB}+\frac{1}{3}\overrightarrow{BA}=\overrightarrow{CB}+\frac{1}{3}\left(\overrightarrow{CA}-\overrightarrow{CB}\right)=\frac{2}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}\)

\(\overrightarrow{JB}=x\overrightarrow{JC}\Rightarrow\overrightarrow{CB}-\overrightarrow{CJ}=x\overrightarrow{JC}\Rightarrow\overrightarrow{CB}=\left(x-1\right)\overrightarrow{JC}\Rightarrow\overrightarrow{CJ}=\frac{1}{1-x}\overrightarrow{CB}\)

b) \(\overrightarrow{IJ}=\overrightarrow{CJ}-\overrightarrow{CI}=\frac{1}{1-x}\overrightarrow{CB}-\left(\frac{2}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}\right)=\frac{2x+1}{3\left(1-x\right)}\overrightarrow{CB}-\frac{1}{3}\overrightarrow{CA}\)

c) Dễ có \(\overrightarrow{CG}=\frac{2}{3}\left(\overrightarrow{CB}+\overrightarrow{CA}\right)\). Để \(\overrightarrow{IJ}\)//\(\overrightarrow{CG}\) thì :

\(\frac{\frac{2}{3}}{\frac{2x+1}{3\left(1-x\right)}}=\frac{\frac{2}{3}}{-\frac{1}{3}}\Leftrightarrow\frac{1-x}{2x+1}=-1\Rightarrow2x+1=x-1\Leftrightarrow x=-2\)

Vậy \(x=-2\)tức \(\overrightarrow{JB}=-2\overrightarrow{JC}\)thì IJ // CG.

* Nhận xét: Nếu \(\overrightarrow{u}=x\overrightarrow{a}+y\overrightarrow{b};\overrightarrow{v}=m\overrightarrow{a}+n\overrightarrow{b}\)thì \(\overrightarrow{u}\)//\(\overrightarrow{v}\)\(\Leftrightarrow\frac{x}{m}=\frac{y}{n}.\)