Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B I H E K M N
a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
b) tam giác ABE và IBM đồng dạng (3 góc = nhau ) nên AE=AB/2 . trên AC lấy N sao cho AE=EN => BE là trung tuyến ứng của tg ABN ,
ABN cân vì AN=AB
=> AI là phân giác góc A cũng là trung tuyến . => I là trọng tâm => BE=3IE .
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
tham khảo https://olm.vn/hoi-dap/detail/81565525995.html
#Học tốt!!!
Qua N kẻ đường thẳng EF song song với BC (\(E\in AB,F\in AC\)), qua E kẻ đường thẳng song song với HK cắt AC tại G
Có: EF // BC (theo cách chọn hình phụ) nên theo định lý Thales, ta có: \(\frac{EN}{BM}=\frac{AN}{AM}=\frac{NF}{MC}\)
Mà BM = MC (do AM là trung tuyến) nên NE = NF
\(\Delta\)EFG có NK // EG (theo cách chọn hình phụ), N là trung điểm của EF (cmt) nên K là trung điểm của GF hay GK = KF (*)
Xét\(\Delta\)AHI và \(\Delta\)AKI có: ^AHI = ^AKI = 900 (gt); AI là cạnh chung; ^HAI = ^KAI (gt) nên \(\Delta\)AHI = \(\Delta\)AKI (ch - gn)
=> AH = AK (hai cạnh tương ứng) hay \(\Delta\)AHK cân tại A lại có EG // HK nên \(\Delta\)AEG cũng cân tại A => AE = AG
=> AH - AE = AK - AG => HE = GK = KF (theo (*))
Xét \(\Delta\)IHE và \(\Delta\)IKF có: IH = IK (tính chất của điểm thuộc tia phân giác); ^IHE = ^IKF ( = 900); HE = KF (cmt) => \(\Delta\)IHE = \(\Delta\)IKF (c.g.c) => IE = IF (hai cạnh tương ứng) do đó \(\Delta\)IEF cân tại I có IN là trung tuyến nên cũng là đường cao
Ta có: NI\(\perp\)EF và EF // BC (theo cách vẽ hình phụ) nên NI \(\perp\)BC (đpcm)
Câu hỏi của Phạm Thị Hằng - Toán lớp 8 - Học toán với OnlineMath
a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH
tham khảo ne:
https://olm.vn/hoi-dap/question/154181.html
giống nà