Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm được 1 phần à.
THeo định lý Pytago có :
BC2 = AB2 + AC2 => BC2 = 4,752+ 6,252 => BC = \(\sqrt{4,75^2+6,25^2}\)
=> BC = 43,8125 \(\approx\) 43,81 (cm)
Xét 2 tam giác vuông BDI và BEI có :
BI chung
Góc DBI = Góc EBI (vì BI là tia phân giác của góc B)
=> tam giác BDI = tam giác BEI (ch-gn)
=> BD = BE = 4,75 (cm)
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)
Do đó: ΔBDI=ΔBFI
=>ID=IF
Xét ΔCFI vuông tại F và ΔCEI vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)
Do đó: ΔCFI=ΔCEI
=>IE=IF
b: IE=IF
ID=IF
Do đó: IE=ID
Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
ID=IE
Do đó: ΔADI=ΔAEI
=>\(\widehat{DAI}=\widehat{EAI}\)
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
Xét tam giác CID và tam giác CIE có:
IC chung
góc ECT=góc DCI(do CI là tia phân giác góc C)
góc IEC=góc IDC=90 độ
=>tam giác CID=tam giác CIE
=>IE=ID (2 cạnh tương ứng)
Bổ sung đề: ID vuông góc với AB
a) Xét ΔIDB vuông tại D và ΔIFB vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)(BI là tia phân giác của \(\widehat{DBF}\))
Do đó: ΔIDB=ΔIFB(cạnh huyền-góc nhọn)
Suy ra: ID=IF(hai cạnh tương ứng)
Sửa đề: Chứng minh IE=IF
Xét ΔIFC vuông tại F và ΔIEC vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)(CI là tia phân giác của \(\widehat{FCE}\))
Do đó: ΔIFC=ΔIEC(cạnh huyền-góc nhọn)
Suy ra: IF=IE(Hai cạnh tương ứng)
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)