K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Điểm M nằm trong ∆ABC sao cho AM < BM thì tô phần tam giác ABC thuộc nửa mp bờ là trung trực của đoạn AB có chứa điểm A.

-Điểm M nằm trong ABC sao cho MB

19 tháng 4 2017

Giải bài 11 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Điểm M nằm trong ΔABC sao cho MA < MB thì tô phần ΔABC thuộc nửa mặt phẳng bờ là trung trực của đoạn AB có chứa điểm A (phần màu đỏ).

- Điểm M nằm trong ΔABC sao cho MB < MC thì tô phần ΔABC thuộc nửa mặt phẳng bờ là đường trung trực của đoạn BC có chứa B (phần màu xanh). Phần tam giác được tô hai lần (đỏ và xanh) là phần chứa điểm M thỏa: MA < MB < MC.

11 tháng 2 2019

Giải bài 11 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

Áp dụng kết quả bài 70 (chương III – SGK) ta có:

MA < MB khi M thuộc nửa mặt phẳng chứa điểm A bờ là đường trung trực của AB (phần gạch chéo)

MB < MC khi M thuộc nửa mặt phẳng chứa điểm B bờ là đường trung trực của BC (phần được chấm chấm).

(Cách chứng minh xem lại bài 70).

Phần giao của hai nửa mặt phẳng trên là phần hình chứa điểm M thỏa mãn MA < MB < MC (phần hình được tô màu xanh).

12 tháng 4 2019

Bài 11 (trang 92 SGK Toán 7 tập 2)

12 tháng 4 2019

Giải bài 11 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

Áp dụng kết quả bài 70 (chương III – SGK) ta có:

MA < MB khi M thuộc nửa mặt phẳng chứa điểm A bờ là đường trung trực của AB (tô màu đỏ).

MB < MC khi M thuộc nửa mặt phẳng chứa điểm B bờ là đường trung trực của BC (tô màu xanh).

(Cách chứng minh xem lại bài 70).

Phần giao của hai nửa mặt phẳng trên là phần hình chứa điểm M thỏa mãn MA < MB < MC - chính là phần tô màu 2 lần.

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

11 tháng 3 2019

A B C M N D

Vẽ tam giác đều AMN trên nửa mặt phẳng bờ AM chứa điểm B.Kẻ BD vuông góc với AM tại D.

Ta có:\(\widehat{NAB}=\widehat{NAM}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\widehat{MAC}=\widehat{BAC}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\Rightarrow\widehat{NAB}=\widehat{MAC}\)

Xét \(\Delta\)AMC và \(\Delta\)ANB có:AM=AN,^NAB=^MAC,AB=AC => \(\Delta AMC=\Delta ANB\left(c-g-c\right)\Rightarrow\hept{\begin{cases}AN=AM=MN=1\\BN=CM=\sqrt{3}\end{cases}}\)

Ta có:\(BN^2+MN^2=\sqrt{3}+1^2=4=BM^2\)

\(\Rightarrow\Delta BNM\) vuông tại N.

\(\Rightarrow\widehat{BNM}=90^0,BM=2MN\)

\(\Rightarrow\widehat{NMB}=60^0\Rightarrow\widehat{AMB}=120^0\)

Mà \(\Delta ANB=\Delta AMC\Rightarrow\widehat{ANM}=\widehat{AMC}=60^0+60^0=120^0\)(^AMC có khác gì ^CMA đâu má)

Ta có:\(\widehat{BMD}=180^0-\widehat{BMA}=180^0-120^0=60^0\)

\(\Rightarrow\widehat{MBD}=30^0\Rightarrow MB=2MD\Rightarrow MD=1\Rightarrow AD=2\)

Xét \(\Delta\)BNM và \(\Delta\)BDM có:BM  là cạnh chung,^NBM=^DBM(cùng bằng 30 độ) => \(\Delta BNM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BN=BD=\sqrt{3}\)

Áp dụng định lý Pythagore vào tam giác vuông ABD ta được:\(AB^2=AD^2+BD^2=2^2+\sqrt{3}^2=4+3=7\)

\(\Rightarrow AB=\sqrt{7}\).Mà \(\Delta\)ABC đều nên \(AB=BC=CA=\sqrt{7}\)