Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{MB}{MC}=\frac{\overrightarrow{MB}}{\overrightarrow{CM}}=k$
$\Rightarrow \overrightarrow{MB}=k\overrightarrow{CM}$
$\Leftrightarrow (k+1)\overrightarrow{MB}=k\overrightarrow{CB}$
$\Rightarrow \overrightarrow{MB}=\frac{k}{k+1}\overrightarrow{CB}; \overrightarrow{CM}=\frac{1}{k+1}\overrightarrow{CB}$
Do đó:
$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM})$
$= \frac{1}{2}(\overrightarrow{AB}-\frac{k}{k+1}\overrightarrow{CB}+\overrightarrow{AC}+\frac{1}{k+1}\overrightarrow{CB})$
$=\frac{1}{2}[\overrightarrow{AB}-\frac{k}{k+1}(\overrightarrow{CA}+\overrightarrow{AB})+\overrightarrow{AC}+\frac{1}{k+1}(\overrightarrow{CA}+\overrightarrow{AB})]$
$=\frac{1}{k+1}\overrightarrow{AB}+\frac{k}{k+1}\overrightarrow{AC}(*)$
Lại có:
$5\overrightarrow{AK}=2(\overrightarrow{AB}+\overrightarrow{BK})+3(\overrightarrow{AC}+\overrightarrow{CK})$
$=2\overrightarrow{AB}+3\overrightarrow{AC}+(2\overrightarrow{BK}+3\overrightarrow{CK})=2\overrightarrow{AB}+3\overrightarrow{AC}-\overrightarrow{AK}$
$\Rightarrow \overrightarrow{AK}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}(**)$
Từ $(*); (**)$ mà $A,K,M$ thẳng hàng nên $\frac{3}{k+1}=\frac{2k}{k+1}$
$\Rightarrow k=\frac{3}{2}$
A B C D I K
a)
- \(\overrightarrow{BI}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\) (t/c trung điểm)
\(=\frac{1}{2}\left(\overrightarrow{BA}+\frac{1}{2}\overrightarrow{BC}\right)\)
\(=\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\)
- \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)
\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{AC}\)
\(=\overrightarrow{BA}+\frac{1}{3}\left(\overrightarrow{BC}-\overrightarrow{BA}\right)\)
\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}-\frac{1}{3}\overrightarrow{BA}\)
\(=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}\)
b) Ta có: \(\overrightarrow{BK}=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}=\frac{4}{3}\left(\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\right)=\frac{4}{3}\overrightarrow{BI}\)
=> B,K,I thẳng hàng
c) \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
\(\Leftrightarrow27\left(\overrightarrow{MC}+\overrightarrow{CA}\right)-8\left(\overrightarrow{MC}+\overrightarrow{CB}\right)=2015\overrightarrow{MC}\)
\(\Leftrightarrow27\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{MC}-8\overrightarrow{CB}-2015\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow-1996\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{CB}=\overrightarrow{0}\)
\(\Leftrightarrow1996\overrightarrow{CM}=8\overrightarrow{CB}-27\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)
Vậy: Dựng điểm M sao cho \(\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)
a/ \(\Leftrightarrow\overrightarrow{IA}+3\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{BI}=\overrightarrow{AC}+\overrightarrow{AB}\)
nhận thấy \(\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AK}\) (K là TĐ của BC)
\(\Rightarrow\overrightarrow{BI}=\overrightarrow{AK}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BI}\uparrow\uparrow\overrightarrow{AK}\\\left|\overrightarrow{BI}\right|=\left|\overrightarrow{AK}\right|\end{matrix}\right.\)
Câu này tôi chọn K ko liên quan j tới câu c hết
b/ \(\Leftrightarrow\overrightarrow{BA}=2\overrightarrow{CJ}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}\uparrow\uparrow2\overrightarrow{CJ}\\BA=2CJ\end{matrix}\right.\)
c/ \(\Leftrightarrow\overrightarrow{KA}+2\overrightarrow{KB}+2\overrightarrow{BC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{KA}=2\overrightarrow{CK}\Rightarrow...\)