Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có NA = NB; MA = MC
=> NM là đường trung bình
=> MN // BC; MN = 1/2 BC (1)
Tam giác GBC có: DG = DB; EG = EC
=> ED là đường trung bình
=> ED // BC; ED = 1/2 BC
Từ (1) và (2) suy ra: MN // DE; MN = ED
=> NMED là hình bình hành
=> ME // ND
ta có GM=1/2GB (tính chất đường trung tuyến của tam giác) GD=1/2GB (gt) suy ra GM=GD ta có GN=1/2GC(tính chất đường trung tuyến của tam giác) GE=1/2GC (gt) vậy tứ giác MNDE có GM=GD và GN=GE nên là hình bình hành(vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường) => MN//DE , ND//ME (tích chất hình bình hành) (đpcm)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a, Xét tam giác GBC có : D là trung điểm GB
E là trung điểm GC
=> DE là đường trung bình tam giác GBC
=> DE // BC và DE = 1/2 BC (1)
Xét tam giác ABC có : N là trung điểm AB
M là trung điểm AC
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC (2)
Từ (1) ; (2) suy ra MN // DE ( đpcm ) và MN = DE
b, Có : MN // DE và MN = DE ( cma )
=> tứ giác MNDE là hình bình hành
=> ND // ME và ND = ME
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó; NM là đường trung bình
=>NM//BC và NM=BC/2(1)
Xét ΔGBC có
D là trung điểm của GB
E là trung điểm của GC
Do đó: DE là đường trung bình
=>DE//BC và DE=BC/2(2)
Từ (1) và (2) suy ra NM//DE và NM=DE
=>NMED là hình bình hành
Suy ra: ND//ME
GT/KL: Bn tự lm nhé
CM:
Xét tam giác ABC, ta có: AN =NB(gt) ; AM= MC(gt) => MN là đường trung bình của tam giác ABC
=> MN = \(\frac{1}{2}\)BC=6(cm); MN // BC (1)
b)Xét tam giác GBC,ta có: GE =EB (gt); GF=FC(gt)=> EF là đường trung bình của tam giác GBC
=> EF = \(\frac{1}{2}\)BC= 6(cm); EF // BC (2)
Từ (1) và (2) => EF // MN; EF =MN
a) Xét \(\Delta ABC\) có NA = NB ; MA = MC
=> MN là đường trung bình của \(\Delta ABC\)
=> MN // BC và MN = 1/2 BC (1)
Xét \(\Delta GBC\) có : DG = DB ; EG = EC
=> DE là đường trung bình của \(\Delta GBC\)
=> DE // BC và DE = 1/2 BC (2)
từ (1) và (2) => DE = MN và DE //MN
b) Có DE = MN ; DE // MN
=> DEMN là hình bình hành
=> ND = ME
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang
Do H là trung điểm của BC (gt)
⇒ AH là đường trung tuyến của ∆ABC
Ta có:
G là giao điểm của hai đường trung tuyến BM và CN của ∆ABC (gt)
Mà AH là đường trung tuyến của ∆ABC (cmt)
⇒ AH đi qua G
Vậy A, G, H thẳng hàng.
a) Xét ΔABC có
N là trung điểm của AB(gt)
M là trung điểm của AC(gt)
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)
Xét ΔGBC có
E là trung điểm của GB
F là trung điểm của GC
Do đó: EF là đường trung bình của ΔGBC
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra NM//EF và NM=EF
hay MNEF là hình bình hành
b) Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC
CN là đường trung tuyến ứng với cạnh AB
BM cắt CN tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm của ΔABC
BM là đường trung tuyến ứng với cạnh AC
Do đó: \(GB=2GM\)
mà GF=2GM
nên GB=GF
hay G là trung điểm của BF
Xét ΔABC có
G là trọng tâm của ΔABC
CN là đường trung tuyến ứng với cạnh AB
Do đó: \(GC=2GN\)
mà GI=2GN
nên GC=GI
hay G là trung điểm của CI
Xét tứ giác BIFC có
G là trung điểm của đường chéo CI(cmt)
G là trung điểm của đường chéo BF(cmt)
Do đó: BIFC là hình bình hành
Xét ΔABC có AN/AB=AM/AC=1/2
nên NM//BC và NM=1/2BC(1)
Xét ΔGBC có GP/GB=GQ/GC=1/2
nên PQ//BC và PQ=BC/2(2)
Từ (1), (2) suy ra NM//PQ và NM=PQ
=>MNPQ là hình bình hành
a/
Xét tg ABC có
NA=NB; MA=MC => MN là đường trung bình của tg ABC => MN//BC
Xét tg GBC có
DG=DB; EG=EC => DE là đường trung bình của tg GBC => DE//BC
=> MN//DE (cùng // BC)
b/
Xét tg ABG có
NA=NB; DG=DB => ND là đường trung bình của tg ABG => ND//AG
Xét tg ACG có
MA=MC; EG=EC => ME là đường trung bình của tg ACG => ME//AG
=> ND//ME (cùng // với AG)
a) Vì ��BM, ��CN là các đường trung tuyến của Δ���ΔABC nên ��=��MA=MC, ��=��NA=NB.
Do đó ��MN là đường trung bình của Δ ���Δ ABC, suy ra ��MN // ��BC. (1)
Ta có ��DE là đường trung bình của Δ ���Δ GBC nên ��DE // ��BC. (2)
Từ (1) và (2) suy ra ��MN // ��DE.
b) Xét Δ ���Δ ABG, ta có ��ND là đường trung bình.
Xét Δ ���Δ ACG, ta có ��ME là đường trung bình.
Do đó ��ND // ��AG, ��ME // ��AG.
Suy ra ��ND // ��ME.