Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
1: Xét tứ giác BHCD có
O là trung điểm của BC
O là trung điểm của HD
Do đó: BHCD là hình bình hành
trực tâm ở cạnh nào hay góc nào bạn?
có trực tâm chính xác sẽ làm dễ hơn
a,
+,Có CK vuông góc AB
BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.
a) Tứ giác BHCDBHCD có:
BH//DCBH//DC (do cùng ⊥AC⊥AC)
CH//BDCH//BD (do cùng ⊥AB⊥AB)
⇒BHCD⇒BHCD là hình bình hành (dấu hiệu nhận biết)
b) Do BHCDBHCD là hình bình hành gọi HD∩BC=I⇒IHD∩BC=I⇒I là trung điểm cạnh HD (1)
Gọi HE∩BC=G,ΔBHEHE∩BC=G,ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHEΔBHE cân đỉnh B
⇒GH=GE⇒G⇒GH=GE⇒G là trung điểm cạnh HEHE (2)
Từ (1) và (2) ⇒IG⇒IG là đường trung bình của ΔHEDΔHED
⇒IG//ED⇒BC//ED⇒IG//ED⇒BC//ED (đpcm)
giúp mk với