Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) xét tam giác AMN và tam gáic CEN có
AN=NC(gt)
MN=NE(gt)
ANM=CNE( đối đỉnh)
=> tam giác AMN= tam giác CEN(cgc)
=> AM=CE(hai cạnh tương ứng) mà AM=MB=> MB=CE
=> CEN=AMN(hai góc tương ứng)
mà CEN so le trong với AMN mà A,M,B thẳng hàng=> MB//CE
c) từ MB//CE=> BMC=MCE( so le trong)
xét tam giác BMC và tam gíac ECM có
MC chung
BMC=MCE(cmt)
MB=CE(cmt)
=> tam gíac BMC= tam giác ECM(ccg)
d) từ tam giác BMC= tam giác CEM=> BCM=EMC( hai góc tương ứng), ME=BC( hai cạnh tương ứng)
mà BCM so le trong với EMC=> MN//BC
vì MN=NE mà ME=BC(cmt)
=> BC=2MN=> MN=1/2BC
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=1/2BC
a) Xét ΔANI và ΔCNM có
AN=CN(N là trung điểm của AC)
\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)
NI=NM(gt)
Do đó: ΔANI=ΔCNM(c-g-c)
b) Ta có: ΔANI=ΔCNM(cmt)
nên AI=MC(hai cạnh tương ứng)
Ta có: ΔANI=ΔCNM(cmt)
nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)
mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong
nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)
d) Xét ΔANE và ΔCNF có
NA=NC(N là trung điểm của AC)
\(\widehat{EAN}=\widehat{FCN}\)(cmt)
AE=CF(gt)
Do đó: ΔANE=ΔCNF(c-g-c)
hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)
mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)
nên \(\widehat{CNF}+\widehat{CNE}=180^0\)
\(\Leftrightarrow\widehat{FNE}=180^0\)
hay E,N,F thẳng hàng(đpcm)