Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra:MN//BC
hay BMNC là hình thang
a: Xét tứ giác BMNP có
BM//NP
MN//BP
Do đó: BMNP là hình bình hành
b:
Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
Xét tứ giác APCQ có
N là trung điểm chung của AC và PQ
=>APCQ là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
NP//AB
Do đó: P là trung điểm của CB
Để AQCP là hình thoi thì AP=CP
mà CP=BC/2
nên AP=BC/2
Xét ΔABC có
AP là đường trung tuyến
\(AP=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà \(BP=\dfrac{BC}{2}\)
nên MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
Do đó: MN là đường trung bình của ΔBAC
BAC hay bc thế ạ