Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA
a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó:ΔABI=ΔHBI
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó; ΔAIK=ΔHIC
Suy ra: AK=HC
mà BA=BH
nên BK=BC
=>ΔBKC cân tại B
a, Áp dụng định lý Pytago :
ta có : \(BC^2=AC^2+AB^2\)
\(BC^2=3^2+4^2\)
\(BC^2=9+16=25=5^2\)
=>\(BC=5^{ }\)
b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn
Có : Trong tam giác ABC có BC=5, AC=4, AB=3
=> góc A > góc B > góc C
Vậy góc B > góc C
c, Xét △BIC và △AIC có
góc \(C_1=C_2\)
BAC = KHC = 90 độ
IC cạnh chung
=> △HIC = △AIC
Xét △HIB và △KIA có
IH = IA (cmt)
\(I_1=I_2\)( đối đỉnh)
Góc A = góc H = 90 độ
=> △HIB = △AIK
Vậy cạnh AK = BH