Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a ) ( tg là tam giác nha )
Xét tgABC và tgDCB ,có :
AB = CD ( gt )
BC là cạnh chung
góc B1 = góc C2 ( 2 góc so le trong của AB // CD )
Do đó : tgABC = tgDCB ( c - g - c )
b ) Ta có : tgABC = tgDCB ( cmt )
=> góc C1 = gócB2 ( 2 góc tương ứng )
=> AC//BD ( vì gócC1 và gócB2 là 2 góc so le trong của AC và BD )
c ) sai đề rồi
d ) Ta có : AB // CD ( gt )
và : AB = CD ( gt )
do đó : tứ giác ABCD là hinh bình hành ( có 2 cặp cạnh đối song song và bằng nhau ) ( 1 )
mà : I là trung điểm của BC ( 2 )
: AD và BC cũng chính là 2 đường chéo của hình bình hành ABCD ( 3 )
Từ ( 1 ) (2 ) và ( 3 ) suy ra : I là trung điểm cùa AD ( vì trong hình bình hành trung điểm của một đường chéo chính là trung điểm của đường chéo còn lại )
bài làm
Ta có:vì AB=AC(gt)
mà trên tia đối của AB và AC lấy điểm D và E sao cho BD=CE
=>^BDE=^CED(2 góc tương ứng)
Xét t.g BDE và t.g CED
ED là cạnh chung
BD = CE
^BDE=^CED(cmt)
=>t.g BDE=t.g CED (c.g.c)
XL mình chỉ làm đc phần a thôi ( không biết có đúng không)
A B C O D 1 2 1 1 3 4
Vì CD // AB (gt)
=> \(\widehat{C_1}=\widehat{B_1}\) (2 góc so le trong)
Xét \(\Delta AOB\) và \(\Delta COD\) có:
\(\widehat{C_1}=\widehat{B_1}\) (cmt)
BO = OC (O là trung điểm BC)
\(\widehat{O_1}=\widehat{O_2}\) (2 góc đối đỉnh)
=> \(\Delta AOB\) = \(\Delta COD\) (g.c.g)
b) Vì \(\Delta AOB\) = \(\Delta COD\) (cmt)
=> AO = OD (2 cạnh tương ứng)
Xét \(\Delta AOC\) và \(\Delta DOB\) có:
AO = OD (cmt)
\(\widehat{O_3}=\widehat{O_4}\) (2 góc đối đỉnh)
BO = OC (cmt)
=> \(\Delta AOC\) = \(\Delta DOB\) (c.g.c)
=> AC = BD (2 cạnh tương ứng)