Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

19 tháng 8 2023

a. Để chứng minh tam giác ABM bằng tam giác DCM, ta có:

Vì M là trung điểm của BC, nên BM = MC.Vì MD = MA, nên tam giác AMD là tam giác cân tại A.Từ đó, ta có AM = AD.Vì BM = MC và AM = AD, nên tam giác ABM và tam giác DCM có cạnh bằng nhau và góc tương ứng bằng nhau.Do đó, tam giác ABM bằng tam giác DCM.

b. Để chứng minh AC song song và bằng BD, ta có:

Vì B là trung điểm của AC, nên AB = BC.Vì MD = MA, nên tam giác AMD là tam giác cân tại A.Từ đó, ta có AM = AD.Vì AB = BC và AM = AD, nên tam giác ABM và tam giác DCM có cạnh bằng nhau và góc tương ứng bằng nhau.Do đó, AC song song và bằng BD.

c. Để chứng minh B, M, Q thẳng hàng và M trung trực AK, ta có:

Vì B là trung điểm của AC và Q là trung điểm của BC, nên BQ song song với AC và BQ = 1/2 AC.Vì M là trung điểm của BC, nên MQ song song với AC và MQ = 1/2 AC.Vì BQ song song với AC và MQ song song với AC, nên B, M, Q thẳng hàng.Vì M là trung điểm của BC, nên AM là đường trung trực của BC.

Vậy, ta đã chứng minh được các phần a, b, c.

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC//BD và AC=BD

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

DO đó: ΔABM=ΔACM

b: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

5 tháng 1 2022

Vẽ hình giúp mình luôn đc không ạ

28 tháng 11 2015

A B C M D

a) Xét \(\Delta ABMvà\Delta DCMcó:\)

MB=MC

góc AMB=góc CMD

MA=MD

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Xét \(\Delta AMCvà\Delta BMDcó:\)

MC=MB

góc AMC=góc BMD

MA=MD

\(\Rightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)

\(\Rightarrow AC=BD\)(cặp cạnh tương ứng)

c) Theo a), \(\Delta ABM=\Delta DCM\Rightarrow\)góc ABM=góc DCM (cặp góc tương ứng)

Mà 2 này tạo với BC hai góc so le trong nên AB//CD

16 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Ta có: AB//CD

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AB=CD

AC chung

Do đó: ΔABC=ΔCDA

c: Ta có: ΔABC=ΔCDA

=>BC=DA

Xét ΔMCA và ΔMBD có

MC=MB

\(\widehat{CMA}=\widehat{BMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMCA=ΔMBD

=>\(\widehat{MCA}=\widehat{MBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Ta có: AC//BD

AC\(\perp\)CD

Do đó: DC\(\perp\)DB

=>ΔDBC vuông tại D