Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
Xét tam giác ABC có
AB = AC ( = 5 cm )
=> tam giác ABC cân tại A ( ĐN)
Ta có AM là trung tuyến (gt)
=> AM là đg cao (t/c tam giác cân)
=> AM vuông BC (ĐN)
Ta có M là trung điểm của BC(AM là trung tuyến)
=> BM=CM=1/2 BC=6/2=3cm
Xét tam giác ABM có
AM vuông BC (cmt)
=> tam giác ABM vuông tại M (ĐN)
=> AM2 +BM2 = AB2 (đ/l Pitago)
Thay số: AM2 + 3 = 5
=> AM2= 5-3
=> AM2= 2
=> AM = \(\sqrt{2}\)(cm)
b) tam giác \(ABM\ne DCM\)
c) tam giác ACD ko cân
a) tam giác AMD VÀ CMB: MD=MB; GÓC AMD=GÓC CMD(ĐỐI ĐỈNH); MA=MC
=> 2 TAM GIÁC BẰNG NHAU (C.G.C)=> GÓC DAM=GÓC BCM. MÀ 2 GÓC VỊ TRÍ SLT => AD//BC
B) TƯƠNG TỰ CÂU A C/M: TAM GIÁC AMB= TAM GIÁC CMD => GÓC MBA =GÓC MCD.
MÀ 2 GÓC VTRÍ SLT => AB//CD => ABCD LÀ HBH => GÓC ADC=GÓC ABC. <=> GÓC ADC=ACB
MÀ GÓC ACB=GÓC DAC(CMT) => GÓC ADC=GÓC DAC => TAM GIÁC ACD CÂN TẠI C => CA=CD
C) TAM GIÁC DBE : DI LÀ TRUNG TUYẾN. . VÌ ABCD LÀ HBH => M CŨNG LÀ TRUNG ĐIỂM DB => TAM GIÁC DBE: EM CŨNG LÀ TRUNG TUYẾN.
C LÀ TRỌNG TÂM => DI CẮT ME tại C. => D,I,C THẲNG HÀNG. HAY DI ĐI QUA C
1) Xét tam giác AMD và tam giác CMB có :
AM = MC ( M là trung điểm AC )
\(\widehat{AMD}=\widehat{CMB}\)( 2 góc đối đỉnh )
BM = MD ( GT )
=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> Góc A1 = góc C1 ( 2 góc tương ứng )
AD = BC ( 2 cạnh tương ứng )
MÀ 2 góc ở vị trí sole trong
=> AD // BC
2. Xét \(\Delta\)BNC và\(\Delta\)ANE có:
NA = NB ( N là trung điểm AB )
NE = NC ( N là trung điểm CE )
^BNC = ^ANE ( đối đỉnh )
=> \(\Delta\)BNC = \(\Delta\)ANE ( c. g . c) (1)
=> ^EAN = ^CBN mà hai góc này ở vị trí so le trong
=> AE // BC
mà AD // BC ( theo 1)
=> E; A; D thẳng hàng (2)
Từ (1) => AE = BC
mà AD = BC ( theo 1)
=> AE = AD (3)
Từ (2); (3) => A là trung điểm ED.
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD