K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

a, Xét tam giác AMN và tam giác BMC có:

MN = MC

góc AMN = góc BMC

AM= BM

=> Xét tam giác AMN = tam giác BMC

b, Ta có: tam giác AMN = tam giác BMC

=> góc ANM = góc BCM

Mà: 2 góc này ở vị trí so le trong

nên: AN//BC

c,Ta có: tam giác AMN = tam giác BMC

=> AN = BC

Xét tam giác ANC và tam giác BNC có:

AN =BC

góc BCN = góc ANC

NC chung

Nên: tam giác ANC = tam giác BNC(c.g.c)

Cậu xem lại bài nhé chúc cậu học tốt!!!

Xét tam giác AMN và tam giác BMC có

⎧⎩⎨⎪⎪MB=MANMAˆ=BMCˆMN=MC{MB=MANMA^=BMC^MN=MC(Vì M là trung điểm AB; MN=MC)

⇒⇒ tam giác AMN=tam giác BMC (c-g-c)

⇒NAMˆ=MBCˆ⇒NAM^=MBC^ (2 góc tương ứng)

⇒⇒ AN//BC (Vì 2 góc NAM và góc MBC là 2 góc so le trong)

30 tháng 12 2022

a: Xét ΔMAN và ΔMBC có

MA=MB

góc AMN=góc BMC

MN=MC

Do đó: ΔMAN=ΔMBC

b: ΔMAN=ΔMBC

=>góc MAN=góc MBC

=>AN//BC

c: Xét ΔNAC và ΔCBN có

NA=CB

AC=BN

NC chung

Do đo: ΔNAC=ΔCBN

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

a: Xét ΔAME và ΔDMB có

MA=MD

\(\widehat{AME}=\widehat{DMB}\)

ME=MB

Do đó: ΔAME=ΔDMB

b: Xét tứ giác AEDB có

M là trung điểm của AD

M là trung điểm của BE

Do đó: AEDB là hình bình hành

Suy ra: AE=BD và AE//BD

=>AE//BC

c: Xét ΔAKE và ΔCKD có 

\(\widehat{EAK}=\widehat{DCK}\)

AE=CD

\(\widehat{AKE}=\widehat{CKD}\)

Do đó: ΔAKE=ΔCKD

22 tháng 10 2016

Giúp mk đi khocroi

13 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).

=> \(BC^2=3^2+4^2\)

=> \(BC^2=9+16\)

=> \(BC^2=25\)

=> \(BC=5cm\) (vì \(BC>0\)).

b) Xét 2 \(\Delta\) \(ABC\)\(ANM\) có:

\(AB=AN\left(gt\right)\)

\(\widehat{BAC}=\widehat{NAM}\) (vì 2 góc đối đỉnh)

\(AC=AM\left(gt\right)\)

=> \(\Delta ABC=\Delta ANM\left(c-g-c\right)\)

=> \(BC=MN\) (2 cạnh tương ứng).

Chúc bạn học tốt!

13 tháng 1 2020

Giải giúp mik phần c zới

24 tháng 12 2017

a) Xét tam giác AMN và tam giác BMC, ta có:
     MA = MB (M là trung điểm của AB)
     góc NMA = góc BMC (đối đỉnh)
     MN = MC (gt)
   => tam giác AMN = tam giác BMC
b) Xét tứ giác ACBN, ta có:
     M là trung điểm của AB (gt)
     M là trung điểm của CN (MC = MN)
   => Tứ giác ACBN là hình bình hành
   => AN // BC
c) Do tứ giác ACBN là hình bình hành => AN // BC và AN = BC => góc ANC = góc BCN và AN = BC
    Xét tam giác NAC và tam giác CBN, ta có:
     AN = BC (cmt)
     góc ANC = góc BCN (cmt)
     CN chung
    => tam giác NAC = tam giác CBN

25 tháng 12 2017

Vẽ hình đi bạn.

2 tháng 5 2017

A B C M D 1 2 1 1 2 2 E

a) Xét \(\Delta BMC\)\(\Delta DMA\) có:

\(\widehat{M_1}=\widehat{M_2}\)(2 góc đỗi đỉnh)

MB=MD(gt)

MA=MC(gt)

Do đó, \(\Delta BMC\) = \(\Delta DMA\) (c.g.c)

=> C1=A1 (2 góc tương ứng)

Mà 2 góc này ở vị trí soletrong và bằng nhau

=> AD // BC

b, Chứng minh tương tự ta có: \(\Delta MAB\) = \(\Delta MCD\) (c.g.c)

=> \(\widehat{A_2}=\widehat{C_2}\) (2 góc tương ứng)

Xét \(\Delta ABC\)\(\Delta CDA\) có:

AC chung

\(\widehat{A_2}=\widehat{C_2}\) (cmt)

\(\widehat{C_1}=\widehat{B_1}\)

Do đó \(\Delta ABC\)\(\Delta CDA\) (c.g.c)

Hay \(\Delta CDA\) cân tại C.

c, Ta có: EM đi qua trung điểm BD

=> EM là trung tuyến của \(\Delta EBD\)

Lại có: CA=CE (gt)

MC=MA=\(\dfrac{CA}{2}\)

=> C là trọng tâm của \(\Delta EBD\)

=> DC đi qua trung điểm I của BE.

2 tháng 5 2017

Ngân Hảiko có gì

6 tháng 2 2017

xet tm giac AMB VA TAM GIAC NMC CO

AM=MN

CM=MB

M CHUNG

=>TAM GIÁC AMB=TAM GIÁC NM(CGC)

B,XÉT TAM GIÁC AMC VÀ TAM GIÁC NMB CÓ

MC=MB

AM=MN

M CHUG

=> TÂM GIACC AMC= TAM GIÁC NMB (CGC)

6 tháng 2 2017

Còn câu c và d thì sao =-=