K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

a)* NC= 2AN

NA+AC=2AN

AC=3AN

AN= 1/3 AC

*AK=1/2AN+ 1/2AM

AK= 1/2(1/3AC)+ 1/2(1/2AB)

AK=1/6AC+1/4AB

b)

KD=KA+AD

KD= -1/6AC-1/4AB+1/2AC+1/2AB

KD= 1/3AC+1/4AB

( tất cả đều là vecto)

18 tháng 10 2019

\(\overrightarrow{KA}=-\overrightarrow{AK}=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

\(=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{KD}=\overrightarrow{AD}-\overrightarrow{AK}=\overrightarrow{AD}+\overrightarrow{KA}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

15 tháng 11 2017

chỗ Q là trung điểm của AN
suy ra MQ là đường trung bình sai r cô

15 tháng 11 2017

A B C M N K I Q
\(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=\dfrac{1}{2}\overrightarrow{BM}+\dfrac{1}{3}\overrightarrow{NC}=\dfrac{1}{2}\left(\overrightarrow{BN}+\overrightarrow{NM}\right)+\)\(\dfrac{1}{3}\left(\overrightarrow{NM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\overrightarrow{BN}+\dfrac{1}{3}\overrightarrow{MC}+\dfrac{5}{6}\overrightarrow{NM}\).
Ta cần biểu diễn \(\overrightarrow{NM}\) theo hai véc tơ \(\overrightarrow{CM},\overrightarrow{BN}\).
Gọi I là giao điểm của CM và BN, Q là trung điểm của AN.
MQ là đường trung bình của tam giác ABN nên \(MQ=\dfrac{1}{2}BN\).
Do N là trung điểm của QC và IN // MQ nên I là trung điểm của MC.
Suy ra IN là đường trung bình của tam giác QMC và \(IN=\dfrac{1}{2}MQ\).
Mặt khác \(MQ=\dfrac{1}{2}BN\) nên \(MQ=\dfrac{1}{2}BN\).
Suy ra \(IN=\dfrac{1}{4}BN\).
Vì vậy \(\overrightarrow{NM}=\overrightarrow{NI}+\overrightarrow{IM}=-\dfrac{1}{4}\overrightarrow{BN}+\dfrac{1}{2}\overrightarrow{CM}\).
Từ đó ta có:
\(\overrightarrow{BC}=\dfrac{1}{2}\overrightarrow{BN}+\dfrac{1}{3}\overrightarrow{MC}+\dfrac{5}{6}\overrightarrow{NM}\)\(=\dfrac{1}{2}\overrightarrow{BN}+\dfrac{1}{3}\overrightarrow{MC}-\dfrac{1}{4}\overrightarrow{BN}+\dfrac{1}{2}\overrightarrow{CM}\)
\(=\dfrac{1}{2}\overrightarrow{BN}-\dfrac{1}{3}\overrightarrow{CM}-\dfrac{1}{4}\overrightarrow{BN}+\dfrac{1}{2}\overrightarrow{CM}\)
\(=\dfrac{1}{4}\overrightarrow{BN}+\dfrac{1}{6}\overrightarrow{CM}\).

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)