Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi BE giao CF tại H. Khi đó ^AHP = ^ACB (Cùng phụ ^HAC), ^HAP = ^CMA (Cùng phụ ^MAH)
Do vậy \(\Delta\)APH ~ \(\Delta\)MAC (g.g), suy ra \(\frac{AP}{MA}=\frac{AH}{MC}\)
Tương tự \(\Delta\)AQH ~ \(\Delta\)MAB, suy ra \(\frac{AQ}{MA}=\frac{AH}{MB}\)
Vì M là trung điểm BC nên \(\frac{AH}{MB}=\frac{AH}{MC}\). Vậy \(\frac{AP}{MA}=\frac{AQ}{MA}\Rightarrow AP=AQ\)(đpcm).
Hình tự kẻ nha
a)Xét 2 tam giác vuông ABH và ACH có
Góc AHB = góc AHC (=90°)
AB= AC ( tam giác ABC cân tại A)
Góc ABC = góc ACB (tam giác ABC cân tại A)
=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)
b)Tam giác ABC cân =>góc ABC=gócACB
=>gócABM=gócACN
Xét 2 tam giác ABM và ACN
AB=AC ( tam giác ABC cân tại A)
Góc ABM=góc ACN (cmt)
BM=CN(gt)
=> tam giác ABM=tam giác ACN
=>AM=AN
Do đó tam giác AMN cân tại A
c) Phần này hình như sai đề
a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)
\(\widehat{B_1}=\widehat{C_1}\) (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)
\(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)
Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)
Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
=> AM = AN (2 cạnh t/ứng)
=> t/giác AMN cân
c) Ta có: t/giác MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)
t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)
Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh) (2)
Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K
có KH là đường cao
=> KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)
(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH => BH = CH => KH là đường trung trực)
t/giác ABH = t/giác ACH (cm câu a) => BH = CH
=> AH là đường trung tuyến
mà AH cũng là đường cao
=> AH là đường trung trực của cạnh BC (4)
Do A \(\ne\)K (5)
Từ (3); (4); (5) => A, H, K thẳng hàng
Xét tam giác BEM và tam giác CFM có :
BM = MC ( gt )
Góc E = Góc F ( = 90độ )
Góc M1 = Góc M2 ( đối đính )
=> Tam giác BEM = tam giác CFM ( ch - gn )
=> BE = CF ( 2 cạnh tương ứng )
Vậy,..........
a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\)
Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :
^AFC = ^AEB = 900; \(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)
b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900
Xét \(\Delta AED\) và \(\Delta AFD\) có : ^AFD = ^AED = 900 ( cmt ) ; \(AF=AE\left(cmt\right);AD\) chung
\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )
c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và \(\Delta AFN\) có :
\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD ); \(AN\) chung.
\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE = ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )
=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE
Nên N thuộc AM \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)
Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau
LOGIC ?
Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !
Ý thức ko mua đc ''='' tiền.
xét tam giác BEM và tam giác CFM
BM=MC( M là trung điiem của BC)
\(\widehat{BME}\)=\(\widehat{CME}\)( đối đỉnh )
góc BEM = góc CFM=1v( BE và CF vuông góc với AM)
=>tam giác BEM = tam giác CFM(ch-gn)
=>ME= MF ( hai canh tuong uong)
b) góc BEM = góc CFM
mà 2 góc trên là hai góc so le trong
=> BE//CF
c)theo câu a) tam giác BEM = tam giác CFM
=> ME=MF ( hai canh tuong uong)
=> M là trung điểm của EF
a: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔEMB=ΔFMC
Suy ra: BE=CF
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó; BECF là hình bình hành
Suy ra: BF//CE
Ta thấy ngay theo quan hệ đường vuông góc, đường xiên ta có:
BM > BE;CM > CF
Vậy nên BE + CF < BM + MC = BC
dễ ha
:3
Ta thấy ngay theo quan hệ đường vuông góc, đường xiên ta có:
\(BM>BE;CM>CF\)
Vậy nên \(BE+CF< BM+MC=BC\)