Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác abc.gọi k là 1 điểm thuộc đường phân giác của góc ngoài tại a. chứng minh ab+ac<kb+kc
a) Xét ∆ABE và ∆MBE có:
BE chung
góc ABE = góc MBE (BE là phân giác của góc ABC)
AB = BM
⇒∆ABE = ∆MBE (c-g-c)
⇒góc BAE = góc BME (hai góc tương ứng)
⇒ME vuông góc BC
b) Do ∆ABE = ∆MBE (cmt)
⇒AE = ME (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆AEK và ∆MEC có:
AE = ME (cmt)
góc AEK = góc MEC (đối đỉnh)
⇒∆AEK = ∆MEC (cạnh góc vuông - góc nhọn kề)
⇒EK = EC (hai cạnh tương ứng)
AK = MC (hai cạnh tương ứng)
Lại có: BK = BA + AK
BC = BM + MC
⇒BK = BC
c) Gọi H là giao điểm của BE và CK
Xét ∆BHK và ∆BHC có:
BK = BC (cmt)
góc HBK = góc HBC (do BE là tia phân giác của góc ABC)
BH chung
⇒∆BHK = ∆BHC (c-g-c)
⇒góc BHK = góc BHC (hai góc tương ứng)
Mà góc BHK + góc BHC = 180⁰ (kề bù)
⇒góc BHK = góc BHC = 180⁰ : 2 = 90⁰
⇒BH vuông góc KC
Hay BE vuông góc KC
a: Xét ΔAHC vuông tại H và ΔKHC vuông tại H có
HA=HK
HC chung
Do đó: ΔAHC=ΔKHC
b: Xét ΔEBD và ΔECA có
EB=EC
\(\widehat{BED}=\widehat{CEA}\)(hai góc đối đỉnh)
ED=EA
Do đó: ΔEBD=ΔECA
=>\(\widehat{EBD}=\widehat{ECA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
c: Xét ΔEAH vuông tại H và ΔEKH vuông tại H có
AH=KH
EH chung
Do đó: ΔEAH=ΔEKH
=>\(\widehat{AEH}=\widehat{KEH}\)
=>EB là phân giác của góc AEK
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc kC tại N
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
=>MB=MC
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD