K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ΔAIM=ΔBIC

Xét ΔAIM và ΔBIC có

IA=IB

\(\widehat{AIM}=\widehat{BIC}\)(hai góc đối đỉnh)

IM=IC

Do đó: ΔAIM=ΔBIC

=>AM=BC

Ta có: ΔAIM=ΔBIC

=>\(\widehat{IAM}=\widehat{IBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AM//BC

 

b: Xét ΔEAN và ΔECB có

EA=EC

\(\widehat{AEN}=\widehat{CEB}\)(hai góc đối đỉnh)

EN=EB

Do đó ΔEAN=ΔECB

=>AN=CB

Ta có: ΔEAN=ΔECB

=>\(\widehat{EAN}=\widehat{ECB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//BC

c: Ta có: AN//BC

AM//BC

AN,AM có điểm chung là A

Do đó: M,A,N thẳng hàng

mà AM=AN(=BC)

nên A là trung điểm của MN

a: Xét ΔAIM và ΔBIC có

IA=IB

\(\widehat{AIM}=\widehat{BIC}\)

IM=IC

Do đó: ΔAIM=ΔBIC

=>\(\widehat{IAM}=\widehat{IBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AM//BC

ΔIAM=ΔIBC

=>AM=BC

b: Xét ΔEAN và ΔECB có

EA=EC

\(\widehat{AEN}=\widehat{CEB}\)

EN=EB

Do đó: ΔEAN=ΔECB

=>\(\widehat{EAN}=\widehat{ECB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//CB

c: ΔEAN=ΔECB

=>AN=CB

AN//CB

AM//CB

AN,AM có điểm chung là A

Do đó: M,A,N thẳng hàng

mà MA=NA

nên A là trung điểm của MN

6 tháng 1 2019

a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)

b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)

c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N  thẳng hàng (đpcm) 

20 tháng 3 2020

Giải:

Xét ΔAMK,ΔBCKΔAMK,ΔBCK có:
AK=KB(=12AB)AK=KB(=12AB)

K1ˆ=K2ˆK1^=K2^ ( đối đỉnh )

MK=KC(gt)MK=KC(gt)

⇒ΔAMK=ΔBCK(c−g−c)⇒ΔAMK=ΔBCK(c−g−c)

⇒A1ˆ=Bˆ⇒A1^=B^ ( góc t/ứng )

Xét ΔANE,ΔCBEΔANE,ΔCBE có:
AE=EC(=12AC)AE=EC(=12AC)

E1ˆ=E2ˆE1^=E2^ ( đối đỉnh )

BE=EN(gt)BE=EN(gt)

⇒ΔANE=ΔCBE(c−g−c)⇒ΔANE=ΔCBE(c−g−c)

⇒A2ˆ=Cˆ⇒A2^=C^ ( góc t/ứng )

Ta có: Aˆ+Bˆ+Cˆ=180oA^+B^+C^=180o ( tổng 3 góc của ΔABCΔABC )

⇒Aˆ+A1ˆ+A2ˆ=180o⇒A^+A1^+A2^=180o

⇒MANˆ=180o⇒MAN^=180o

⇒M,A,N⇒M,A,N thẳng hàng (1)

Vì ΔAMK=ΔBCKΔAMK=ΔBCK

⇒MA=BC⇒MA=BC ( cạnh t/ứng )

Vì ΔANE=ΔCBEΔANE=ΔCBE

⇒AN=BC⇒AN=BC

⇒MA=AN(=BC)⇒MA=AN(=BC) (2)

Từ (1) và (2) ⇒A⇒A là trung điểm của MN

Vậy A là trung điểm của MN

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

A B C K E M N

Bài làm

~ Mik nghĩ pk là tia đối của KC mới chứng minh được, Và câu b mik nghĩ đề không đúng đâu, nhìn hình mik vẽ thì chắc bbạn cũnng hiểu. ~

Xét tam giác AKM và tam giác BKC có:

AK = BK (K trung điểm AB)

\(\widehat{AKM}=\widehat{BKC}\)( hai góc đối )

MK = KC ( gt ) 

=> Tam giác AKM = tam giác BKC ( c.g.c )

=> AM = BC                               (1) 

Xét tam giác AEN và tam giác CEB có:

AE = EC ( E trung điểm AC )

\(\widehat{AEN}=\widehat{CEB}\)( hai góc đối ) 

EN = EB ( gt )

=> Tam giác AEN = tam giác CEB ( c.g.c )

=> AN = BC                            (2)

Từ (1) và (2) => AM = AN ( đpcm )

b) ~ Mik nghĩ là chứng minh AM // BC và AN // BC vì theo như hình mik vẽ thì thấy AM và AN cùng // BC. nếu k phải thì nói lại cho mik để mik làm lại cho ~

Vì tam giác AKM = tam giác BKC ( cmt )

=> \(\widehat{AMK}=\widehat{KCB}\)( hai góc tương ứng )

Mà hai góc này vị trí so le trong

=> AM // BC                                                      (3) 

Vì tam giác AEN = tam giác CEB ( cmt )

=> \(\widehat{ANE}=\widehat{EBC}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong.

=> AN // BC.                                                    (4)

c) Từ (3) và (4) => A, M, N thẳng hàng ( Theo tiên đờ Ơ-clit ) ( đpcm )

7 tháng 11 2016

Sửa lại đề bài: chỗ EN = ED fai là EN = EB ms đúng chứ nhỉ

Ta có hình vẽ:

A B C M N K E

a) Vì K là trung điểm của AB nên AK = KB

Xét Δ AKM và Δ BKC có:

AK = KB (cmt)

AKM = BKC (đối đỉnh)

KM = KC (gt)

Do đó, Δ AKM = Δ BKC (c.g.c)

=> AM = BC (2 cạnh tương ứng); AMK = BCK (2 góc tương ứng)

Mà AMK và BCK là 2 góc so le trong => AM // BC (đpcm)

b) Vì E là trung điểm của AC nên AE = EC

Xét Δ AEN và Δ CEB có:

AE = CE (cmt)

AEN = CEB (đối đỉnh)

EN = EB (gt)

Do đó, Δ AEN = Δ CEB (c.g.c)

=> AN = BC (2 cạnh tương ứng); ANE = CBE (2 góc tương ứng)

Mà ANE và CBE là 2 góc so le trong => AN // BC (đpcm)

c) Ta có: AM // BC (câu a)

AN // BC (câu b)

Mà theo tiên đề Ơ-clit qua 1 điểm nằm ngoài 1 đường thẳng chỉ vẽ được 1 đường thẳng song song với đường thẳng cho trước nên AM trùng với AN hay 3 điểm A, M, N thẳng hàng

Mặt khác, AM = BC = AN => A là trung điểm của MN (đpcm)

29 tháng 11 2016

A B M N C D E

a) xét tam giác ADM và tam giac BDC ta có

MD=DC (gt)

AD=DB(D là trung điểm AB)

góc ADM=góc BDC (2 góc doi đỉnh)

-> tam giác ADM= tam giác BDC (c-g-c)

b) ta có

góc MAD = góc DBC (  tam giác ADM= tam giác BDC )

mà 2 góc nẳm o vị trí soletrong

nên AM//BC

c) 

 xét tam giác AEN và tam giac BEC ta có

EN=EB (gt)

AE=EC(E là trung điểm AC)

góc AEN=góc BEC (2 góc doi đỉnh)

-> tam giác ANE = tam giác CBE (c-g-c)

-> góc NAE = góc BCE (2 góc tương ứng

mà 2 góc nằm o vi trí sole trong

nên AN//BC

ta có 

AN//BC (cmt)

AM//BC (cmb)

-> AM trùng AN

-> A,M,N thẳng hàng

29 tháng 11 2016

*-Bạn tự vẽ hình nhé!*

CM:a) Xét tam giác ADM và tam giác BDC có:

           AD=BD(D là trung điểm của AB)

           Góc ADM=góc BDC(đối đỉnh)

           DM=DC(gt)

   => tgiac ADM = tgiac BDC (c.g.c)

b) =>góc MAD= góc DBC (hai góc tương ứng)

   Mà 2 góc này ở vị trí so le trong

 => AM song song BC                                                                 (1)

c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)

=> góc NAE= góc CEB(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> BC song song AN                                                             (2)

Từ (1) và (2)=> MA song song BC; AN song song BC

=> A,M,N thẳng hàng (ơ-clit)

*- cho mk nha!!!-Mơn b *:)*