K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 6 2016

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

8 tháng 6 2016

Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D

29 tháng 4 2019

xét tam giác AMH và tam giác NMB có : AM = MN (gt)

BM = MH do M là trung điểm của BH (gt)

góc AMH = góc NMB (đối đỉnh)

=> tam giác AMH = tam giác NMB (c - g - c)

=> góc AHM = góc NBM (đn)

mà góc AHM = 90 do AH _|_ BC (gt)

=> góc NBM = 90

=> BN _|_ BC (đn)

29 tháng 4 2019

Do \(\Delta\)ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến

Ta có:H là trung điểm BC,I là trung điểm CN 

Áp dụng định lý sau: "đoạn thẳng nối trung điểm 2 cạnh bất kì của một tam giác thì song song với cạnh còn lại và bằng nửa cạnh ấy, đoạn thẳng này gọi là đường trung bình" cho tam giác BCN thì: HI//BN

Mà: HAM=BNM (suy ra trực tiếp từ kết quả câu a)

=>AH//BN

Theo Tiên đề Euclid thì AH trùng HI hay A;H;I thẳng hàng 

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
7 tháng 8 2015

a) Xét ΔAMH và ΔNMB có:

       MB=MH (gt)

Góc BMN = HMA (đối đỉnh

       MA=MN (gt)

Vậy ΔAMH=ΔNMB. (c.g.c)

=> Góc MBN=MAH=90o(2 góc tương ứng)

Hay NB vuông góc với BC.

b) Vì ΔAMH=ΔNMB nên AH=NB (1)

ΔABH vuông tại H, có AH là đường cao, AB là đường xiên

nên AH<AB(quan hệ đường xiên và hình chiếu trong tam giác vuông). (2)

Từ (1) và (2) suy ra NB<AB.

c) Từ M kẻ MK vuông góc với AB tại K.

ΔBKM có KM là đường cao, MB là đường xiên nên MK<MB mà MB=MH

=> MK<MH => GÓc BAM<MAH(quan hệ giữa góc và cạnh đối diện trong tam giác).

d) câu này mình k chắc lắm

ΔACN có AI và CM là các đường trung tuyến giao nhau tại H nên H là trọng tâm của tam giác.

=> AH là trung tuyến kẻ từ đỉnh A đến NC, mà AI cũng là trung tuyến kẻ từ A đến NC nên 3 điểm A, H, I cùng nằm trên đường trung tuyến của NC

Vậy 3 điểm A, H, I thẳng Hàng.

vì bạn chưa học đường trung bình nên mình k dùng theo tiên đề ơ-clit được, câu d nếu sai thì cho xl nha!

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)