Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có DF // BC (cmt) hay DI // BE; D là trung điểm của AD ⇒ I là trung điểm của AE và DI = BE/2
Trong ΔAEC có IF là đường trung bình nên IF = EC/2 mà EC = EB (gt) ⇒ IF = ID hay I là trung điểm của DF.
Lời giải:
a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:
\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)
Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$
$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.
Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)
Vậy ta có đpcm.
b)
Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$
$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$
Mặt khác:
$FN\parallel AC\Rightarrow FN\parallel AE(2)$
$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$
Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$
Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)
c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:
$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$
$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$
Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm.
Xét tam giác EBD có : IM là đường trung bình Của tam giác EBD vậy ta có :IM=1/2DB * Xét tam giác DEC có : IN là đường trung bình của tam giác DEC vậy ta có :IN=1/2 EC** Mà DB= EC *** Chứng minh tương tự ta có : NK là đường trung bình của tam giác DCB vậy NK=1/2 DB ****; MK là đường trung bình của tam giác BEC vậy : MK=1/2EC ****** theo *; ** ; *** ; ****; *****ta có : NK=MK=IM=IN vậy tứ giác IMNK là hình thoi mà trong hình thoi hai đg chéo vuông góc với nhau suy ra : IKvuông góc với MN
Bạn vẽ hình giúp mình nhé!
a. Cm: DFEH là hình thang cân
Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.
\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\)
Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)
\(\Rightarrow\)DE là đường trung bình trong tam giác ABC
\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)
Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC
\(\Rightarrow\) DF//BC
\(\Rightarrow\) Tứ giác DFEH là hình thang (3)
Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.
b. Cm: I là trung điểm của DF
Ta có: DFEH là hình thang cân
\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)
Mà DE//AC \(\Rightarrow\) DE//AF
\(\Rightarrow\)Tứ giác AFED là hình bình hành
Mà \(I=DF\cap AE\)
\(\Rightarrow\) I là trung điểm của DF