Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABM\)và \(\Delta ACM\)
+ AB = AC(gt)
+ BM = CM(gt)
+ Chung AM
Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)
=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\)và \(\Delta ACE\)
+ \(\widehat{ABD}=\widehat{ACE}\)
+ AB = AC (gt)
+BD = EC(gt)
\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)
Xét \(\Delta AHB\)và \(\Delta AKC\)
+ AH = AK (gt)
+ AB = AC (gt)
+ \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)
=> HB=CK ( hai cạnh tương ứng)
d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng
Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)
\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
Xét \(\Delta BAO=\Delta CAO\)
+ AB = CA (gt)
+ Chung AO
+ \(\widehat{BAO}=\widehat{CAO}\)(cmt)
\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)
=>OB = OC (hai cạnh tương ứng)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) xét tam giác AMH và tam giác NMB có:
AM=MN(gt)
\(\widehat{AMH}\)=\(\widehat{NMB}\)(vì đối đỉnh)
BM=MH(gt)
=> tam giác AMH=tam giác NMB(c.g.c)
=> \(\widehat{NBM}\)=\(\widehat{AHM}\)mà góc AHM=90 độ => \(\widehat{NBM}\)=90 độ
=> NB\(\perp\)BC
b) vì tam giác AMH=tam giác NMB(câu a)=> AH=NB(2 cạnh tương ứng)
trong tam giác AHB có: AB>AH(vì cạnh huyền lớn hơn cạnh góc vuông)
mà AH=NB(cmt) => NB<AB
c) vì theo câu b ta có NB<AB => \(\widehat{BNA}\)>\(\widehat{BAN}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)
mà \(\widehat{BNA}\)=\(\widehat{MAH}\)(theo câu a) => \(\widehat{BAM}\)< \(\widehat{MAH}\)
d)
A B C H M N I