K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

11 tháng 5 2019

a) xét tam giác AMH và tam giác NMB có:

          AM=MN(gt)

        \(\widehat{AMH}\)=\(\widehat{NMB}\)(vì đối đỉnh)

        BM=MH(gt)

=> tam giác AMH=tam giác NMB(c.g.c)

=> \(\widehat{NBM}\)=\(\widehat{AHM}\)mà góc AHM=90 độ => \(\widehat{NBM}\)=90 độ

=> NB\(\perp\)BC

b) vì tam giác AMH=tam giác NMB(câu a)=> AH=NB(2 cạnh tương ứng)

trong tam giác AHB có: AB>AH(vì cạnh huyền lớn hơn cạnh góc vuông)

mà AH=NB(cmt) => NB<AB

c) vì theo câu b ta có NB<AB => \(\widehat{BNA}\)>\(\widehat{BAN}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

mà \(\widehat{BNA}\)=\(\widehat{MAH}\)(theo câu a) => \(\widehat{BAM}\)\(\widehat{MAH}\)

d) 

A B C H M N I

21 tháng 11 2019

2+3 bằng mấy

21 tháng 11 2019

tran le xuan huong

     =5 nha bn

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

a.Xét hai tam giác vuông ABE và tam giác vuông KBE có góc ABE = góc KBE = 90độ cạnh BE chung góc ABE = góc KBE [ gt ] Do đó ; tam giác ABE = tam giác KBE [ g.c.g ] ⇒ AB = KB [ cạnh tương ứng ] Vậy tam giác ABK cân tại B b.Xét tam giác ABD và tam giác KBD có AB = KB [ vì tam giác ABE = tam giác KBE theo câu a ] góc ABD = góc KBD [ vì BD là tia phân giác góc B ] cạnh BD chung Do đó ; tam giác ABD = tam giác KBD [ c.g.c ] ⇒ góc BAD = góc BKD [ góc tương ứng ] mà bài cho góc BAD = 90độ nên góc KBD = 90độ Vậy DK vuông góc với BC c.Vì DK vuông góc với BC và AH vuông góc với BC nên DK // AH Suy ra ; góc HAK = góc DKA [ ở vị trí so le trong ] [ 1 ] Mặt khác ; AD = DK [ vì tam giác ABD = tam giác KBD ] ⇒ tam giác ADK là tam giác cân tại D nên góc DKA = góc DAK [ 2 ] Từ [ 1 ] và [ 2 ] suy ra góc HAK = góc DAK