K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

A B C D M P P' Q

a) Ta có: M là trung điểm của AD (gt) (1)

Mà P' là điểm đối xứng của P qua M (gt)

\(\Rightarrow M\)cũng là trung điểm của PP' (2)

Từ (1), (2) \(\Rightarrow APDP'\)là hình bình hành (3)

Từ (3) \(\Rightarrow\) PA = P'D (4)

Từ (3) \(\Rightarrow PA\) // P'D

\(\Rightarrow\) PC // P'D (5)

Mà DB = DC (6)

Từ (5), (6) \(\Rightarrow\) P'D là đường trung bình của \(\Delta BPC\)

\(\Rightarrow\) P'D = \(\dfrac{1}{2}PC\) (7)

Từ (4), (7) \(\Rightarrow\) PA = \(\dfrac{1}{2}PC\) (8)

\(\Leftrightarrow\dfrac{PA}{PC}=\dfrac{1}{2}\)

Từ (8) \(\Rightarrow\) PC = 2PA (9)

Từ (4), (9) \(\Rightarrow\) PA + PC = PA + 2PA

\(\Leftrightarrow AC=3PA\)

\(\Leftrightarrow\dfrac{PA}{AC}=\dfrac{1}{3}\)

Vậy \(\dfrac{PA}{PC}=\dfrac{1}{2}\)\(\dfrac{PA}{AC}=\dfrac{1}{3}\)

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)

25 tháng 12 2016

A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .

→ AI = MN

b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :

AI = IC

→ ΔAIC cân tại I

→ Góc IAN = góc ICN

Xét ΔAIN và ΔCIN có :

Góc INA = Góc INC = 90o

AI = IC

Góc IAN = góc ICN

→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )

→ AN = NC

Ta có : IN = ND

AN = NC

→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .