Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) NF là đường trung bình của \(\Delta DBC\)nên \(NF=\frac{1}{2}CD\)
DF là đường trung bình của \(\Delta ABC\)nên \(DF=\frac{1}{2}AB\)
NE là đường trung bình của \(\Delta ABD\)nên \(NE=\frac{1}{2}AB\)
Dễ c/m : NF = ED (t/c cặp đoạn chắn song song)
Vậy NE = ED = DF = NF
Vậy tứ giác ENFD là hình thoi
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Hình thì bạn tự vẽ lấy nhé :
\(\frac{AD}{DC}=\frac{AB}{BC}< \frac{AC}{BC}=\frac{AE}{EB}\) ( 1 )
Mà KD // BC nên ta có :
\(\frac{AD}{DC}=\frac{AK}{KB}\)( 2 )
Từ ( 1 ) ; ( 2 ) suy ra \(\frac{AK}{KB}< \frac{AE}{EB}\)suy ra \(\frac{AK+KB}{KB}< \frac{AE+EB}{EB}\)
Hay \(\frac{AB}{BK}< \frac{AE}{EB}\)
Vậy KB > EB do đó điểm E nằm giữa K và B
b) Gọi M là giao điểm của DE và CB, ta có:
\(\widehat{EDB}< \widehat{KBD}=\widehat{B_1}+\widehat{B_2}\)mà \(\widehat{KDE}=\widehat{M}\)còn \(\widehat{B_1}>\widehat{M}\)\(\Rightarrow\)\(\widehat{B_2}>\widehat{D_1}\)
Nên trong tam giác BED ta có : EB < ED ( 3 )
\(\widehat{E_1}\)là góc ngoài đỉnh E của tam giác MEC nên \(\widehat{E_1}>\widehat{C_1}=\widehat{C_2}\)khi đó trong tam giác CED có: ED < DC
Từ ( 3 ) và ( 4 ) suy ra EB < ED < DC ( ĐPCM )