Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A dựng đường cao AH, M dựng đường cao MD ( H, D thuộc BC )
\(\left(S_{MAB};S_{MBC};S_{MAC}\right)\rightarrow\left(S_1;S_2;S_3\right)\)
\(\Delta HAA_1\) có \(AH//MD\left(\perp BC\right)\) áp dụng Ta-let \(\Rightarrow\)\(\frac{AA_1}{MA_1}=\frac{AH}{MD}=\frac{\frac{1}{2}AH.BC}{\frac{1}{2}MD.BC}=\frac{S_{ABC}}{S_2}\)
\(\Rightarrow\)\(\frac{AA_1}{MA_1}-1=\frac{MA}{MA_1}=\frac{S_{ABC}}{S_2}-1=\frac{S_1+S_3}{S_2}\)
Tương tự( dựng các đường cao hạ từ B, M và C, M ) ta cũng có: \(\frac{MB}{MB_1}=\frac{S_1+S_2}{S_3};\frac{MC}{MC_3}=\frac{S_2+S_3}{S_1}\)
Do đó: \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}=\frac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1S_2S_3}\)
\(\ge\frac{2\sqrt{S_1S_2}.2\sqrt{S_2S_3}.2\sqrt{S_3S_1}}{S_1S_2S_3}=\frac{8\sqrt{\left(S_1S_2S_3\right)^2}}{S_1S_2S_3}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\) tam giác ABC là tam giác đều và có 3 đường trung trực đồng quy tại M
Câu 2a. Theo đầu bài ta có hình:
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/251347049833.html