Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là hình vẽ , lưu ý ở bên dưới ví dụ như ABC là góc ABC
C D A B x x
Vì điểm D thuộc AC nên điểm D nằm giữa 2 điểm A và C
=> AD + CD = AC
Thay số: 4 + 3 = AC
=> 7 = AC
=> AC = 7(cm)
Vậy AC = 7 cm
b) Trên cùng một nửa mặt phẳng bờ chứa tia BA có ABD = 30o, ABC = 55o
=> ABD < ABC
=> ABD + DBC = ABC
Thay số: 30o + DBC = 55o
=> DBC = 55o - 30o
=> DBC = 25o
Vậy DBC = 25o
c) TH1: Tia Bx và BD nằm trên cùng một nửa mặt phẳng bờ chứa tia BA
=> Tia BD nằm giữa hai tia BA và Bx
=> ABD + DBx = ABx
Thay số: 30o + 90o = ABx
=> 120 o = Abx
=> ABx = 120o
TH2: Tia Bx và tia BD nằm trên hai nửa mặt phẳng đối nhau bờ chứa tia BA
=> Tia BA nằm giữa hai tia BD và Bx
=> DBA + ABx = DBx
Thay số: 30o + ABx = 90o
=> ABx = 90o - 30o
=> ABx = 60o
Vậy TH1: ABx = 120o
TH2 : ABx = 60o
Chúc bạn học tốt nha!
bạn ơi đề thiếu phần d
d)trên ab lấy e.cmr 2 đoạn và ce cắt nhau
Giải
a) Xét \(\Delta ABC\) ta có :
\(\widehat{B}=\widehat{A}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
\(\widehat{B}=90^0+32^0=180^0\)
\(\widehat{B}=122^0=180^0\)
\(\widehat{B}=180^0-122^0=58^0\)
b)
Theo bài ra ta có : \(\widehat{A}:\widehat{B}:\widehat{C}=2:7:1\)
\(\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2+7+1}=\dfrac{180^0}{10}=18^0\)
\(+)\)\(\dfrac{\widehat{A}}{2}=18^0\Rightarrow\widehat{A}=18^0\times2=36^0\)
\(+)\)\(\dfrac{\widehat{B}}{7}=18^0\Rightarrow\widehat{B}=18^0\times7=126^0\)
\(+)\)\(\dfrac{\widehat{C}}{1}=18^0\Rightarrow\widehat{C}=18^0\times1=18^0\)
c)
Xét \(\Delta ABC\) ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí trong 3 góc cùng 1 tam giác )
\(\widehat{A}+75^0+\widehat{C}=180^0\)
\(\widehat{A}+\widehat{C}=180^0-75^0\)
\(\widehat{A}+\widehat{C}=105^0\)
Theo bài ra ta có :
\(\widehat{A}:\widehat{C}=3:2\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{C}}{2}=\dfrac{\widehat{A}+\widehat{C}}{3+2}=\dfrac{105^0}{5}=21^0\)
\(+)\)\(\dfrac{\widehat{A}}{3}=21^0\Rightarrow\widehat{A}=21^0\times3=63^0\)
\(+)\)\(\dfrac{\widehat{C}}{2}=21^0\Rightarrow\widehat{C}=21^0\times2=42^0\)
Ta có: \(\widehat{A}+2.\widehat{B}=100^0\) => \(\widehat{A}=100^0-2.\widehat{B}\)
Xét t/giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(tổng 3 góc của 1 t/giác)
=> \(\left(100^0-2.\widehat{B}\right)+\widehat{B}+\widehat{C}=180^0\)
=> \(100^0-2\widehat{B}+\widehat{B}+\widehat{C}=180^0\)
=> \(100^0-\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{C}-\widehat{B}=180^0-100^0\)
=> \(\widehat{C}-\widehat{B}=80^0\)
cảm ơn nhiều