K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

do tam giác abc có b=90o

=> diện tích của tam giác abc là: 5x4=20cm2

vậy diên tích tam giác abc là 20cm2

9 tháng 12 2021

SABC=\(\dfrac{1}{2}\)BC.AB = \(\dfrac{1}{2}\)5.4=10(cm2)

2 tháng 11 2021

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)

24 tháng 5 2022

a.Áp dụng định lý pitago:

\(AB=\sqrt{5^2-4^2}=\sqrt{9}=3\left(cm\right)\)

b.Xét tam giác ABC và tam giác HAC, có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

\(\widehat{C}\): chung

Vậy tam giác ABC đồng dạng tam giác HAC ( g.g )

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Leftrightarrow AC^2=BC.HC\) ( đfcm )

c.\(\Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\)

\(HB=BC-HC=5-3,2=1,8\left(cm\right)\)

d.Áp dụng t/c đường phân giác \(\widehat{BAC}\) có:

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)

\(\Leftrightarrow\dfrac{3}{4}=\dfrac{DB}{DC}\)

\(\Leftrightarrow\dfrac{DC}{4}=\dfrac{DB}{3}=\dfrac{DC+DB}{4+3}=\dfrac{5}{7}\)

\(\Rightarrow DC=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\)

e.\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)

24 tháng 5 2022

Cs `AC` r thì tính `AC` lm j nx bạn :)

21 tháng 8 2016

Xét tam giác ABC có :

\(bc^2\)=\(5^2\)=25

\(ab^2\)+\(ac^2\)=\(3^2\)+\(4^2\)=9+16=25   

Suy ra:\(bc^2=ab^2+ac^2\)(định lí py-ta-go đảo)

    15 tháng 1 2019

    Suy ra: tam giác ABC vuông tại A.

    Diện tích tam giác ABC là:

    Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

    *Gọi tam giác ABC đồng dạng với tam giác MNP theo tỉ số k

    Suy ra:

    Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

    Thay số

    Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

    Chọn đáp án B

    4 tháng 1 2021

    Diện tích tam giác abc là \(S_{abc}=\frac{ab.ac}{2}=\frac{4.5}{2}=10cm^2\)