Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\widehat{ADC}=\widehat{A}-\widehat{DAB}=90^o-30^o=60^o\)
Mà \(\widehat{C}=\widehat{A}-\widehat{B}=90^o-30^o=60^o\)
Nên \(\widehat{ADC}=\widehat{C}=60^o\)
Do đó \(\Delta ADC\) là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: \(\Delta ADC\) là tam giác đều \(\Rightarrow AD=DC=AC\left(1\right)\)
Mà do AD là trung tuyến của \(\Delta ABC\) trên AC nên \(BD=CD=\dfrac{1}{2}BC\left(2\right)\)
Từ (1) và (2), suy ra: \(AC=BD=CD=\dfrac{1}{2}BC\) (đpcm)
Chúc bạn học tốt nha.
Hình tự vẽ nha bạn
a> Xét tam giác vuông ABH có:
Góc B+ Góc BAH+ Góc AHB=180 độ (tổng 3 góc trong tam giác vuông ABH)
70+ Góc BAH+ 90=180
=>BAH=20 độ
Xét tam giác vuông AHC có
Góc C+ Góc AHC+ Góc HAC= 180(Tổng 3 góc trong tam giác vuông HAC)
30+90+Góc HAC=180
=> Góc HAC=60 độ
b> Ta có ABC=80 độ (tổng 3 góc trong tam giác HAC)
Mà AD là đường cao
=> Góc BAD=Góc DAC=40 độ
Xét tam giác ABD có
Góc BAD+Góc B+Góc ADB=180
40+70+Góc ADB=180
=> Góc ADB=70 độ
Xét tam giác ADC có
Góc C+ Góc DAC+ Góc ADC = 180
30+40+Góc ADC=180
=>Góc ADC=110 độ
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
=>\(\widehat{ADB}=\widehat{AEC}\)
=>\(\widehat{ADC}=\widehat{AEB}\)