Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trong tam giác, tổng số đo 3 góc=180 => trong tam giác vuông, 2 góc còn lại có tổng số đo=90
Xét tam giác ABC: góc A=90
=> góc ABC+góc ACB=90
tam giác AHC: góc H=90
=> góc CAH+ACB=90
=> góc ABH=góc CAH ( cùng + góc C=90)
b) tam giác AHB: góc H=90
=> góc BAH+góc B=90
mà ta có: B+ góc C=90
=> góc BAH=góc C

Muốn DE song song BC: ta theo từ vuông góc đến song song
Với AH vuông góc BC
Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc
Với AH vuông góc DE
Đặt tên I là giao điểm của AH và DE
Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)
Ta có: DHI = EHI và DH=HEvà HI cạnh chung
bằng nhau xong ta có
DIH=EIH mà kề bù-bằng nhau> vuông góc
Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song

a. △ABC cân tại A, lại có AH là đường cao
=> AH cũng là đường trung tuyến, đường phân giác
=> HB = HC và \(\widehat{BAH}=\widehat{CAH}\)
b. ta có: \(HB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
áp dụng định lý pythagore vào △BAH vuông tại H ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)
c. xét △ vuông HMB và △ vuông HNC có
HB = HC (gt); \(\widehat{ABC}=\widehat{ACB}\) (△ABC cân tại A)
=> △HMB = △HNC (ch-gn)
=> HM = HN (2 cạnnh tương ứng)
=> △MHN là △ cân (tại H)

Bạn tham khảo ở đây:
Câu hỏi của ngô thị gia linh - Toán lớp 7 - Học toán với OnlineMath

a) Chứng minh được tam giác ABH= tam giác ACH (ch-cgv)
Suy ra: HB=HC (2 góc tương ứng). Vậy H là trung điểm BC.
Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH.
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH có:
+ Góc ADH = Góc AEH = 90o (HD vuông góc AB, HE vuông góc AC)
+ AH là cạnh chung
+ Góc DAH= Góc EAH(do tam giác ABH= tam giác ACH)
=> tam giác ADH = tam giác AEH (ch-gh)
Suy ra HD=HE (2 góc tương ứng)
Suy ra tam giác HDE cân tại H.
Xét ΔAHBvà ΔAHCΔAHBvàΔAHCcó:
AHBˆ=AHC=ˆAHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52−42=52=42+AH2⇒AH2=52−42= 25 - 16 = 9 = 3232
Vậy AH = 3 cm.
c) Xét ΔHDBvà ΔHECΔHDBvàΔHEC, ta có:
HDBˆ=HECˆHDB^=HEC^ = 90 độ ( gt )
BH = CH ( câu a )
Do đó: ΔHDB=ΔHECΔHDB=ΔHEC( cạnh huyền - góc nhọn )
⇒DH=HE⇒DH=HE ( 2 cạnh tương ứng ) (1)
Từ (1) => ΔHDEΔHDE cân tại H.
Chúc bạn học tốt ( tớ có 2 cách làm nhưng bạn kẻ hình nhé )