Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
A D B C O
ta có \(\frac{1}{AO^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow AD=\sqrt{117}cm\)
ta có \(\widehat{ADB}=\widehat{ACD}\text{ (do cùng phụ với góc }\widehat{CDB}\text{)}\) nên \(\Delta ADB~\Delta DAC\left(g.g\right)\Rightarrow\frac{DA}{DC}=\frac{AB}{AD}\Rightarrow DC=\frac{DA^2}{AB}=\frac{9\sqrt{13}}{2}\)
ta có \(S_{ABCD}=\frac{1}{2}AD\left(AB+CD\right)=\frac{507}{4}cm^2\)
AB =6cm