K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

\(\widehat{ABH}=\widehat{DBH}\)(BH là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAH=ΔBDH(cạnh huyền-góc nhọn)

b) Ta có: ΔBAH=ΔBDH(cmt)

nên BA=BD(hai cạnh tương ứng) và HA=HD(Hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(1)

Ta có: HA=HD(cmt)

nên H nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BH là đường trung trực của AD

1 tháng 8 2021

Thank bạn nhiều ạ,bạn biết làm câu c ko ạ 😥

29 tháng 5 2023

23 tháng 8 2021

nhớ giải thích nữa nha ạ

 

Chọn D

a: Vì góc A nhọn nên chắc chắn tam giác ABC không thể vuông cân

=> Loại

b: Gọi giao điểm của BH và AC là K

=> BK\(\perp\)AC tại K

Ta có: ΔABK vuông tại K

nên \(\widehat{ABK}+\widehat{BAK}=90^0\)

hay \(\widehat{BAC}=60^0\)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)

nên ΔABC đều

23 tháng 8 2021

bạn giúp mk câu nữa được k ạ

 

8 tháng 8 2023

A B C H M O E I G K

a/

O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC

Nối AO cắt đường trong (O) tại E ta có

\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow BE\perp AB\)

H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)

=> BE//CH (1)

Ta có

\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow CE\perp AC\)

H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)

=> CE//BH (2)

Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME

Xét tg AHE có

MH=ME (cmt)

OA=OE

=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\) 

b/ 

Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)

\(AH\perp BC\)

=> OM//AH 

Xét tg AGH có

IA=IG (gt)

KH=KG (gt)

=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)

=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)

IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)

G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)

=> IG=GM (6)

Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)

c/

Nối H với O cắt AM tại G' Xét tg AHE

MH=ME (cmt) => AM là trung tuyến của tg AHE

OA=OE => HO là trung tuyến của tg AHE

=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)

Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)

\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng

d/

Do G là trọng tâm của tg AHE => GH=2GO