Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AQMK có
\(\widehat{AQM}=\widehat{AKM}=\widehat{KAQ}=90^0\)
=>AQMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Xét tứ giác AMCE có
K là trung điểm chung của AC và ME
=>AMCE là hình bình hành
Hình bình hành AMCE có AC\(\perp\)ME
nên AMCE là hình thoi
a, Xét tứ giác PMQA có :
P=A=Q=90
=> PMQA là hình chữ nhật (tứ giác có 3 góc vuông là HCN)
Câu b và c có thiếu điều kiện gì không bạn
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
Bài 2:
+ I đối xứng vs M qua AC (gt)
=> AC là đương trung trực của IM
=> AI = AM (1)
+ H đối xứng vs M qua AB
=> AB là đương trung trực của MH
=> AM = AH (2)
Từ 1 và 2 => AI = AH (3)
+ tam giác MAI cân tại A (AI = AM)
nên AC là đường trung trực đồng thời là đường phân giác
=>góc A1=gócA2
góc IAM = 2 góc A2
CMTT ta có : góc A3 = góc A4
góc MAH = 2 góc A3
Ta có : góc IAH = góc IAM + góc MAH
= 2góc A2 + 2góc A3
= 2 (góc A2 + góc A3)
= 2. góc CAB
= 2. 90 độ
= 180 độ
=> I,A,H thẳng hàng (4)
Từ 3 và 4 => A là trung điểm của IH
hay H đối xứng vs I qua A
Còn bài 1 để mk nghĩ đã
Hok tốt!!
#Ly#