Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét trong tam giác vuông ABC ta có:
Góc ACB=300
=> ABC=180-90-30=600
Vì góc ACB<ABC(30>60)
=> AB<AC(tính chất cạnh và góc đối diện)
b/Xét tam giác ABE và tam giác DBE có:
BE chung
BAE=BDE=900
ABE=DBE(Phân giác BE của góc ABC)
=> Tam giác ABE= tam giác DBE(ch-gn)
c/ Ta có BE là đường phân giác góc ABC
=> ABE=DBE=60/2=300
=> DBE=ECD=300
=> Tam giác ECB cân tại E
Vì EC là cạnh huyền của tam giác EDC vuông tại D
Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE
=> BE>AB
=> EC>AB(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em tham khảo tại đây nhé.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
ta có : BO và Co 2 TPG => O là (trực tâm phải không nhỉ..)
=> AO là TPG \(\widehat{BAC}\)
=>\(\widehat{BAO}=30^o\)
A,ta có:\(\widehat{ABC}+\widehat{BCA}=180^O-60^0\)
hay:\(\widehat{ABO}+\widehat{OBC}+\widehat{OCB}+\widehat{OCA}=120^o\)(do OB là TPG \(\widehat{ABC}\);OC là TPG \(\widehat{BCA}\))
<=>\(\widehat{2OBC}+\widehat{2OCB}=120^O\)
<=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=120^O\)
<=>\(\widehat{OBC}+\widehat{OCB}=120^O:2=60^O\)
xét tam giác OBC có:
\(\widehat{BOC}+\widehat{BCO}+\widehat{OBC}=180^O\)
=>\(\widehat{BOC}=180^O-\left(\widehat{BCO}+\widehat{OBC}\right)\)
=>\(\widehat{BOC}=180^O-60^O\)
=>\(\widehat{BOC}=120^O\)
còn câu b vs c mình đọc ko hiểu => ko biết làm . xin lỗi bạn