Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)
a)
\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)
\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)
Có \(d\left(D;AM\right)=d\left(C;AM\right)\)
b)
\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)
c)
Bạn check lại đề phần c) nhé
c) Mình làm theo đề bạn sử nhé
Gọi O là giao điểm MN và AC
Ta có : AMND là hình bình hành
AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)
Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)
Chứng minh tương tự ta có :
\(GC=\frac{1}{3}AC\)
\(\Rightarrow EG=\frac{1}{3}AC\)
\(\Rightarrow EG=GC=AE\)
Lần sau bạn làm cả bài giải nha! Cảm ơn bạn nhiều, chúc bạn học tốt
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM
=>H,G,O thẳng hàng