K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

7 tháng 8 2017

làm tương tự

1)Cho tam giác ABC có góc A<90 độ. Vẽ ra phía ngoài ta giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. Từ B kẻ BK vuông góc CD tại K. CMR ba điểm E, K, B thẳng hàng.

2)Cho tam giác ABC có góc A<90 độ. Vẽ ra phía ngoài ta giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. Gọi M là trung điểm của DE, kẻ tia MA. CMR: MA vuông góc vs BC.

3)Cho tam giác ABC có góc A<90 độ. Vẽ ra phía ngoài ta giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC.Gọi H là chân đường vuông góc kẻ từ A đến BC. CMR: tia HA đi qua trung điểm của đoạn thẳng DE.

4)Cho tam giác ABC có góc A<90 độ. Vẽ ra phía ngoài ta giác đó hai đoạn thẳng AD vuông 
góc và bằng AB; AE vuông góc và bằng AC. Gọi H trung điểm BC. CMR: HA vuông góc vs DE

Bài làm

AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN

Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
\Rightarrow Tứ giác ACNB là hình bình hành
\Rightarrow AB // CN và CN = AB = AD

Ta có : DAEˆ+EACˆ+DABˆ+BACˆ=360oDAE^+EAC^+DAB^+BAC^=360o
\Rightarrow DAEˆ+BACˆ=360o−EACˆ−DABˆ=360o−90o−90o=180oDAE^+BAC^=360o−EAC^−DAB^=360o−90o−90o=180o
Mà ACNˆ+BACˆ=180oACN^+BAC^=180o ( trong cùng phía )
\Rightarrow DAEˆ=ACNˆDAE^=ACN^

Xét △△ DAE và △△ NCA có :
AE = AC
DAEˆ=ACNˆDAE^=ACN^
AD = CN
Vậy △△ DAE = △△ NCA

Ta có : FAEˆ+EACˆ+CAHˆ=180oFAE^+EAC^+CAH^=180o
\Rightarrow FAEˆ+CAHˆ=180o−EACˆ=180o−90o=90oFAE^+CAH^=180o−EAC^=180o−90o=90o
Mà CAHˆ=FEAˆCAH^=FEA^ (△△ DAE = △△ NCA)
\Rightarrow FAEˆ+FEAˆ=90oFAE^+FEA^=90o
\Rightarrow △△ AEF vuông tại F
\Rightarrow AF hay AH ⊥⊥ FE hay DE