\(90^o\), \(AH⊥BC\)

a) CM:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

a, bạn xét hai cặp tam giác đồng dạng AHC và BAC rồi suy ra tỉ lệ thức. Tương tự với tam giác AHB và CAB

b, có SABC = 1/2 x AH x BC = 1/2 x AC x AB

               <=> AH x BC = AC x AB

                 => AH=(AC x AB) : BC

   Bạn thay vào rồi tính. Mik chỉ hưỡng dẫn thôi.

    CHÚC BẠN THÀNH CÔNG 

4 tháng 5 2019

45 H B C D                                                                a,  CM: \(\Delta AHB\)đồng dạng voi\(\Delta CAB\)

- Vì \(AH\perp BC\Rightarrow\widehat{AHB=90^o}\)

- Xét \(\Delta AHB\)và \(\Delta CAB\)có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta AHB\)đồng dạng voi \(\Delta CAB\)(g-g) (đpcm)

b, CM: \(AC^2=CH.BC\)

- Xét \(\Delta AHC\)và \(\Delta BAC\)có:

\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{C}\)chung

\(\Rightarrow\Delta AHC\)đòng dạng với\(\Delta BAC\)(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)

\(\Leftrightarrow AC^2=CH.BC\left(đpcm\right)\)

30 tháng 7 2016

Hỏi đáp Toán

30 tháng 7 2016

Bạn tự vẽ hình nhé!

a, Xét Tg ABH và CBA có: góc ABC chung, BHA=BAC (=90)

=> ABH đồng dạng CBA (g.g)  => \(\frac{AB}{BH}=\frac{BC}{AB}\)

=> AB2=BH.BC

b, Sai đề nên mk sửa lại chút nhé >.^

Xét Tg AHB và CHA có:

  AHB=CHA (=90)

   BAH=ACH (=90-ABC)

=> AHB đồng dạng CHA  (g.g)

=>  \(\frac{AH}{BH}=\frac{HC}{AH}\)

=> AH2=BH.HC

c, Ta có: AB.AC=1/2.SABC

                AH.BC=1/2.SABC

=> AB.AC=BC.AH

d, Tương tự câu a, Tg AHC đồng dạng BAC

=> \(\frac{AC}{BC}=\frac{CH}{AC}\)

=> AC2=CH.BC

28 tháng 10 2017

TA CÓ :        \(\widehat{A}=90^0\)

                    \(\widehat{D}=90^0\)

                    \(\widehat{E}=90^0\)

TỨ GIÁC ADHE LÀ HÌNH CHỮ NHẬT   (DHNB)

10 tháng 4 2017

bạn nào giúp mình với 

10 tháng 4 2017

bạn cx k pk lm à?

1 tháng 5 2018

câu b ntn v ạ

10 tháng 5 2019

Bạn tự vẽ hình nhaa =)) <3

a) Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{ABC}chung\)

\(\widehat{BHA}=\widehat{BAC}\)( vì cùng = 90 độ)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta ABC\)(g.g)

b) Vì \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow AB^2+AC^2=BC^2\)( định lý Py-ta-go)

thay số vào tính được AB= 20 (cm) nhé 

Vì \(\Delta HBA\)đồng đạng với \(\Delta ABC\)(cmt) 

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( định nghĩ tam giác đd)

thay số vào rồi tính được AH= 12(cm) nè

c) Xét \(\Delta HCO\)và \(\Delta ACI\)

\(\widehat{HCO}=\widehat{ACI}\)( vì CI là tia phân giác )

\(\widehat{OHC}=\widehat{IAC}\)( cùng = 90 độ)

\(\Rightarrow\Delta HCO\)đòng dạng với \(\Delta ACI\)(g.g)

\(\Rightarrow\frac{HC}{AC}=\frac{HO}{AI}\)( đn tam giác đd)

\(\Rightarrow HC.AI=AC.HO\)

d) Mình chưa ngĩ ra nhwung mình nghĩ sẽ dựa vào Sabc và tỉ số đồng dạng đó ạ :(((

26 tháng 3 2017

hình bạn tự vẽ nhá :)

câu a

tam giác abc vuông tại a

\(=>S_{abc}=\dfrac{ab.ac}{2}=\dfrac{ah.bc}{2}\\ < =>2.S_{abc}=ab.ac=ah.bc\\ < =>ab.ac=ah.bc\)

câu b

xét tam giác hba và tam giác abc có

góc bha = góc bac = 90 độ

chung góc b

=> tam giác hba đồng dạng tam giác abc (gg) (1)

cmtt

=> tam giác hca đồng dạng với tam giác acb (2)

từ 1 và 2

=> tam giác hab đồng dạng tam giác hca (cùng động dạng tam giác abc) (3)

từ 1

\(\dfrac{ab}{bc}=\dfrac{bh}{ab}\\ =>ab.ab=bh.bc\)

câu c

từ 2

\(\dfrac{ac}{bc}=\dfrac{bh}{ac}\\ < =>ac.ac=bh.bc\)

câu d

từ 3

\(=>\dfrac{ah}{ch}=\dfrac{bh}{ah}\\ < =>ah.ah=ch.bh\)

\(\dfrac{1}{ah^2}=\dfrac{1}{ab^2}+\dfrac{1}{ac^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{bh.bc}+\dfrac{1}{ch.bc}\\ < =>\dfrac{1}{ah^2}=\dfrac{ch+bh}{bc.bh.ch}\\ < =>\dfrac{1}{ah^2}=\dfrac{bc}{bc.ah^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{ah^2}\)

=> đpcm

chúc may mắn :)