Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
Suy ra: \(\widehat{EDA}=\widehat{FDA}\)
hay DA là tia phân giác của \(\widehat{EDF}\)
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔDBF=ΔDEC
=>BF=EC và DF=DC
AB+BF=AF
AE+EC=AC
mà AB=AE và BF=EC
nên AF=AC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Xét ΔABC có CF/CA=CD/CB
nên DF//AB và DF=AB/2
=>Di//AB và DI=AB
=>ABDI là hình bình hành
Theo tính chất quen thuộc, O là tâm của (AEF).
Mặt khác, ta lại có \(\widehat{BIC}=90^o+\dfrac{\widehat{BAC}}{2}=135^o\) nên \(\widehat{BIF}=45^o\). Lại có \(\widehat{BAI}=45^o\) nên \(\Delta BIF~\Delta BAI\left(g.g\right)\) \(\Rightarrow\dfrac{BI}{BA}=\dfrac{BF}{BI}\Rightarrow BI^2=BA.BF\) \(\Rightarrow P_{B/\left(O\right)}=P_{B/\left(I;0\right)}\)
\(\Rightarrow\) B nằm trên trục đẳng phương của (O) và (I;0).
Hoàn toàn tương tự, ta chứng minh được C nằm trên trục đẳng phương của (O) và (I;0). Từ đó suy ra BC là trục đẳng phương của (O) và (I;0) \(\Rightarrow BC\perp OI\) (đpcm)
Sao bạn thức khuya vậy?