K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.a, Chứng minh AD vuông góc với BC.b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằngDA là tia phân giác của góc EDF.Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.a) Chứng minh: BD = CE.b) Xác định dạng của ADE.c) Chứng minh: DE // BC.Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trêntia BA...
Đọc tiếp

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.
a, Chứng minh AD vuông góc với BC.
b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng
DA là tia phân giác của góc EDF.
Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.
a) Chứng minh: BD = CE.
b) Xác định dạng của ADE.
c) Chứng minh: DE // BC.
Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên
tia BA lấy điểm F sao cho BF = BC. Kẻ BD là phân giác của góc ABC (D  AC). Chứng
minh rằng:
a) DE  BC ; AE  BD. b) AD < DC.
c) ADF = EDC. d) E, D, F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho
AN = AB. Gọi K là giao điểm của các đường thẳng AB và MN. Chứng minh rằng:
a) MB = MN. b) MBK = MNC.
c) AM  KC và BN // KC. d) AC - AB > MC - MB.
Bài 5. Cho  ABC cân tại A có góc A nhọn, hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh AE = AD
b) Chứng minh AH là phân giác của góc BAC và AH là trung trực của ED.
c) So sánh HE và HC.
d) Qua E kẻ EF // BD (F AC), tia phân giác góc ACE cắt ED tại I. Tính góc EFI.

1

Bài 1: 

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

=>AB=AE và DB=DE

=>AD là trung trực của BE

b: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có

DB=DE

góc BDF=góc EDC
=>ΔDBF=ΔDEC

=>BF=EC và DF=DC

AB+BF=AF

AE+EC=AC

mà AB=AE và BF=EC

nên AF=AC

Xét ΔADF và ΔADC có

AD chung

DF=DC

AF=AC
=>ΔADF=ΔADC

 

a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: DA=DE(hai cạnh tương ứng)

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

mà DC>DE(ΔDEC vuông tại E)

nên DF>DE

28 tháng 6 2021

bạn có thể giúp mình vẽ hình ko

 

12 tháng 11 2021

Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác

nên AEDF là hình vuông

20 tháng 12 2022

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét ΔABC có CF/CA=CD/CB

nên DF//AB và DF=AB/2

=>Di//AB và DI=AB

=>ABDI là hình bình hành

26 tháng 11 2021

 

Lý thuyết: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

 

 

 

26 tháng 11 2021

uk

7 tháng 8 2023

Theo tính chất quen thuộc, O là tâm của (AEF).

Mặt khác, ta lại có \(\widehat{BIC}=90^o+\dfrac{\widehat{BAC}}{2}=135^o\) nên \(\widehat{BIF}=45^o\). Lại có \(\widehat{BAI}=45^o\) nên \(\Delta BIF~\Delta BAI\left(g.g\right)\) \(\Rightarrow\dfrac{BI}{BA}=\dfrac{BF}{BI}\Rightarrow BI^2=BA.BF\) \(\Rightarrow P_{B/\left(O\right)}=P_{B/\left(I;0\right)}\) 

 \(\Rightarrow\) B nằm trên trục đẳng phương của (O) và (I;0). 

 Hoàn toàn tương tự, ta chứng minh được C nằm trên trục đẳng phương của (O) và (I;0). Từ đó suy ra BC là trục đẳng phương của (O) và (I;0) \(\Rightarrow BC\perp OI\) (đpcm)