Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left\{{}\begin{matrix}BD=AD\\CE=AE\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)
\(\Rightarrow BD+CE=AD+AE=ED\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOD}=\dfrac{1}{2}\widehat{AOB}\\\widehat{AOE}=\widehat{EOC}=\dfrac{1}{2}\widehat{AOC}\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)
\(\Rightarrow\widehat{DOE}=\widehat{AOD}+\widehat{AOE}=\dfrac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\dfrac{1}{2}.180^0=90^0\)
(Do \(\widehat{AOB},\widehat{AOC}\) là 2 góc kề bù)
c) Gọi K là trung điểm DE
Ta có: \(DB\perp BC,EC\perp BC\Rightarrow BD//EC\)
\(\Rightarrow BDEC\) là hình thang
Ta có: Tam giác ABC vuông tại A nội tiếp đường tròn (O)
=> O là trung điểm cạnh huyền BC
Xét hthang BDEC có:
O là trung điểm BC(cmt)
K là trung điểm DE(cách vẽ)
=> OK là đường trung bình
\(\Rightarrow\left\{{}\begin{matrix}OK//EC\\OK=\dfrac{1}{2}\left(BD+EC\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}OK=\dfrac{1}{2}DE=DK\\OK\perp BC\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}O\in\left(K\right)\\OK\perp BC\end{matrix}\right.\) => BC là tiếp tuyến đường tròn (K)
a: AC=9
b: \(\tan B=\dfrac{AC}{AB}=\dfrac{9}{12}\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}=53^0\)
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
1: Xét ΔBIC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)
hay \(\widehat{BIC}=135^0\)
\(\Leftrightarrow\widehat{CID}=180^0-135^0=45^0\)