Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)
\(n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)
Ta có :
\(A+B+C\Rightarrow4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2=6x^2+6y^2\)
\(B-C-A\Rightarrow3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2=4xy-4y^2\)
\(C-A-B\Rightarrow-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2=-8x^2+6xy-2y^2\)
Câu 1: Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.
Số đo của góc là bao nhiêu?
A. 70o B. 102o C. 88o D. 68o
Câu 2: Đơn thức -1/2 xy2 đồng dạng với:
A. -1/2 x2y B. x2y2 C. xy2 D. -1/2 xy
Câu 3: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:
A. 3√3 cm B. 3 cm C. 3√2 cm D. 6√3 cm
Câu 4: Tìm n ϵ N, biết 3n.2n = 216, kết quả là:
A. n = 6 B. n = 4 C. n = 2 D. n = 3
Câu 5: Xét các khẳng định sau. Tìm khẳng định đúng. Ba đường trung trực của một tam giác đồng qui tại một điểm gọi là:
A. Trọng tâm của tam giác B. Tâm đường tròn ngoại tiếp
C. Trực tâm của tam giác D. Tâm đường tròn nội tiếp
Câu 6: Cho tam giác ABC có gó A = 500; góc B : góc C = 2 : 3. Bất đẳng thức nào sau đây đúng?
A. AC < AB < BC B. BC < AC < AB C. AC < BC < AB D. BC < AB < AC
Câu 7: Cho điểm P (-4; 2). Điểm Q đối xứng với điểm P qua trục hoành có tọa độ là:
A. Q(4; 2) B. Q(-4; 2) C. Q(2; -4) D. Q(-4; -2)
Câu 8: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là:
A. Trọng tâm tam giác B. Trực tâm tam giác
C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác
Câu 9: P(x) = x2 - x3 + x4 và Q(x) = -2x2 + x3 – x4 + 1 và R(x) = -x3 + x2 +2x4.
P(x) + R(x) là đa thức:
A. 3x4 + 2x2 B. 3x4 C. -2x3 + 2x2 D. 3x4 - 2x3 + 2x2
Câu 10: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là:
A. 8cm B. √54cm C. √44cm D. 6cm
a) \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b) \(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-x^5+2x^4-2x^3+3x^2-x+4\)
\(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
Lại có: \(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
c) Giả sử \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6=0\)
\(\Rightarrow A\left(x\right)=5x^5+5x^4-9x^4-9x^3+7x^3+7x^2-3x^2-3x+6x+6=0\)
\(\Rightarrow A\left(x\right)=5x^4\left(x+1\right)-9x^3\left(x+1\right)+7x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow A\left(x\right)=\left(x+1\right)\left(5x^4-9x^3+7x^2-3x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\5x^4-9x^3+7x^2-3x+6=0\end{cases}}\Rightarrow x=-1\)
Vậy x = -1 là một nghiệm của A(x)
Thay x = -1 vào B(x), nếu kết quả khác 0 thì đó không phải là nghiệm của B(x)
Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.
Số đo của góc là bao nhiêu?
A. 70o
B. 102o
C. 88o
D. 68o
Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.
Số đo của góc là bao nhiêu?
A. 70o
B. 102o
C. 88o
D. 68o