K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình dc ko nếu có trả lời để mik giải cho

29 tháng 7 2015

Lấy F \(\in\) BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120=> góc BOF = góc COF = 60o 
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120=> góc DOC = góc EOB = 60o
Từ đó có 

  • Tam giác BEO = Tam giác BFO (g.c.g)
  • ​Tam giác CDO = Tam giác CFO (g.c.g)
  • => OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
  • => BE = BF và CD = CF 

 Mà BF+CF=BC => BE + CD = BC

Nếu có gì chưa hiểu thì bạn nhắn lại cho minh , cho mình tick đúng nha

9 tháng 12 2017

Lấy F ∈ BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120
o => góc BOF = góc COF = 60
o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120
o => góc DOC = góc EOB = 60
o
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC

15 tháng 2 2016

ko the duoc

 

18 tháng 11 2016

Các bạn giúp mik với

Câu A và B mik ra rồi

CHỉ cần câu C thôi

 

18 tháng 11 2016

hjhj em cung po tay rụ

vui

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)