Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD