Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Bài làm
Trong ΔABC, ta có: D là trung điểm BC
ED = 1/2 AE
⇒E là trọng tâm của ΔABC
Mà BE cắt AC tại G
⇒G cũng là trung điểm của AC.
Giải thích các bước giải:
Bài làm
Trong ΔABC, ta có: D là trung điểm BC
ED = 1/2 AE
⇒E là trọng tâm của ΔABC
Mà BE cắt AC tại G
⇒G cũng là trung điểm của AC.
a)Hình tam giác AID và CIE bằng nhau
b)ED song song với AC
mình nhanh nhất k cho mik
a) Ta nối D với E
TA có hình như sau :
Ta thấy hình tam giác ADC= \(\frac{1}{2}\)DEAC
=> ADE = \(\frac{1}{2}\)DEAC
=> ADE = ADC
Mà đoạn AD = EC = \(\frac{1}{3}\)
=> AE = DC
=> Diện tích hình tam giác AID vằ hình tam giác CIE bằng nhau .
b) Nhìn vào hình ta thấy doạn thẳng ED và AC song song , đối diện nhau .
Hk tốt
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3