K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2022

Xét tam giác ABM có:

  MD là tia phân giác của góc AMB

=>\(\dfrac{DA}{DB}=\dfrac{AM}{BM}\)(Tính chất đường phân giác)(1)

CMTT:\(\dfrac{EA}{EC}=\dfrac{AM}{MC}\)(2)

Ta có: BM=MC(AM là trung tuyến nên M là trung điểm BC)

 =>\(\dfrac{AM}{BM}=\dfrac{AM}{MC}\)(3)

Từ (1),(2) và (3)

=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)

=>DE//BC(định lí ta let áp dụng trong tam giác ABC)

 

12 tháng 2 2022

A B C D E M

Vì ME là tia p/g của \(\widehat{AMC}\) nên \(\dfrac{AE}{AM}=\dfrac{CE}{CM}\Leftrightarrow\dfrac{AE}{CE}=\dfrac{AM}{CM}\)(1)

Vì MD là tia p/g của \(\widehat{AMB}\) nên \(\dfrac{AD}{AM}=\dfrac{BD}{BM}\Leftrightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(2)

\(\dfrac{AM}{CM}=\dfrac{AM}{BM}\)(3)

TỪ (1)(2)(3)=>\(\dfrac{AE}{CE}=\dfrac{AD}{BD}\)

\(\Rightarrow DE//BC\)

BC ko phải DC đk

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>ED//BC

b: Xét ΔABM có DI//BM

nên DI/BM=AI/AM

Xét ΔACM có EI//MC

nên EI/CM=AI/AM

=>DI/BM=EI/CM

=>DI=EI

 

NV
22 tháng 3 2023

Áp dụng định lý phân giác cho tam giác ABM:

\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\) (1)

Áp dụng định lý phân giác cho tam giác ACM:

\(\dfrac{AM}{CM}=\dfrac{AE}{CE}\) (2)

Mà AM là trung tuyến \(\Rightarrow BM=CM\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{CE}\Rightarrow\dfrac{AD}{AD+BD}=\dfrac{AE}{AE+CE}\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\Rightarrow DE||BC\) (định lý talet đảo)

21 tháng 4 2017

Giải bài 17 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 7 2021

cho mk hỏi là tại sao MB=MC mà lại =>\(\dfrac{AM}{BM}=\dfrac{AM}{MC}\)dựa vào t/c j ạ

22 tháng 3 2022

giúp mình dc ko :<<<<

22 tháng 3 2022

Đợi mình chút

 

1: Xét ΔAMB có MD là phân giác

nên AM/MB=AD/DB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AM/MC=AE/EC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

1: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC cso ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1)và (2) suy ra AD/DB=AE/EC
hay DE//BC