Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy tam giác MBI đồng dạng với tam giác MAB ( góc MBI = góc MAB; góc BMI chung)
suy ra MB/MA=MI/MB suy ra MB2= MA.MI
suy ra MC2= MA.MI ( vì MB=MC) do đó MC/MA=MI/MC
Dẫn đến tam giác MCI đồng dạng với tam giác MAC suy ra đpcm
b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .
=> AM = BM = CM = KM .
Xét \(\Delta MKC\) và \(\Delta MAB\) có :
\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)
=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )
- Xét tứ giác ABKC có :
AM = BM = CM = KM và tam giác ABC vuông tại A .
=> Tứ giác ABKC là hình chữ nhật.
=> KC vuông góc với AC .
c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)
Hình tự vẽ hennnn
a/ Xét tam giác MBN và tam giác MAB:
góc M chung
góc MBN = góc MAB (gt)
=> tam giác MBN đồng dạng tam giác MAB (g-g)
=> MB/MA= MN/MB
mà BM = MC (gt)
=>MC/MA= MN/MC
Xét tam giác MCN và tam giác MAC
MC/MA= MN/MC (cmt)
góc M chung
=> tam giác MCN đồng dạng tam giác MAC (c-g-c)
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MI//AC
Do đó: I là trung điểm của AB
Xét ΔBAC có
M,I lần lượt là trung điểm của BC,BA
=>MI là đường trung bình của ΔBAC
=>MI//AC và MI=AC/2
MI//AC
I\(\in\)MN
Do đó: MN//AC
Ta có: \(MI=\dfrac{AC}{2}\)
\(MI=\dfrac{MN}{2}\)
Do đó: MN=AC
Xét tứ giác ACMN có
MN//AC
MN=AC
Do đó: ACMN là hình bình hành
c: Xét ΔBAC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
I,K lần lượt là trung điểm của AB,AC
=>IK là đường trung bình của ΔABC
=>IK//BC
=>IK//MQ
Ta có: ΔQAC vuông tại Q
mà QK là đường trung tuyến
nên \(QK=\dfrac{AC}{2}\)
mà MI=AC/2
nên QK=MI
Xét tứ giác MQIK có MQ//KI
nên MQIK là hình thang
Hình thang MQIK có MI=QK
nên MQIK là hình thang cân
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
a) Xét t/g ABC có :
AM là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}BC\Leftrightarrow AM=MB=MC\)
\(\Rightarrow\)t/g AMC cân tại M ( MA = MC )
\(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{HAB}\)( cùng phụ với góc HBA )
\(\Rightarrow\)\(\widehat{HAB}=\widehat{MAC}\)( đpcm )