Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Ta có: ΔABI=ΔACI
nên AB=AC
hay ΔABC cân tại A
c: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Xét ΔABI và ΔDCI có
AI=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔABI=ΔDCI
Suy ra: AB=CD
a: Xét ΔIAB và ΔIDC có
IA=ID
\(\widehat{AIB}=\widehat{DIC}\)(hai góc đối đỉnh)
IB=IC
Do đó: ΔIAB=ΔIDC
b: ΔIAB=ΔIDC
=>\(\widehat{IAB}=\widehat{IDC}\)
=>AB//CD