Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F 1 2 D M P I O
a, +) Xét \(\Delta OAE\) và \(\Delta OAF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
OA là cạnh chung
\(\Rightarrow\Delta OAE=\Delta OAF\) (cạnh huyền, góc nhọn)
=> OE = OF và AE = À
+) Xét \(\Delta OPB\) và \(\Delta OPC\) có:
BP = PC (gt)
\(\widehat{BPO}=\widehat{CPO}=90^o\) (vì OP là trung trực của BC)
OP là cạnh chung
\(\Rightarrow\Delta OPB=\Delta OPC\left(c.g.c\right)\)
=> OB = OC
+) Xét \(\Delta BOE\) và \(\Delta COF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
OB = OC (cmt)
OE = OF (cmt)
\(\Rightarrow\Delta BOE=\Delta COF\) (cạnh huyền, cạnh góc vuông)
=> BE = CF (đpcm)
b, Kẻ BD // AC (D \(\in\) EF)
\(\Rightarrow\widehat{BDM}=\widehat{MFC};\widehat{MBD}=\widehat{MCF}\) (so le trong)
Vì \(\Delta AEF\) cân (AE = AF) => \(\hept{\begin{cases}\widehat{BDE}=\widehat{AFE}\\\widehat{BED}=\widehat{AFE}\end{cases}\Rightarrow\widehat{BDE}=\widehat{BED}}\) => \(\Delta BED\) cân => BE = BD = CF (vì BE = CF)
Xét \(\Delta MBD\) và \(\Delta MCF\) có:
\(\widehat{MBD}=\widehat{MCF}\)
BD = CF (cmt)
\(\widehat{BDM}=\widehat{MFC}\)
\(\Rightarrow\Delta MBD=\Delta MCF\) (g.c.g)
=> MB = MC
=> M là trung điểm của BC (đpcm)
c, Xét \(\Delta AEI\)và \(\Delta AFI\) có:
AE = AF
góc A1 = góc A2
AI là cạnh chung
\(\Rightarrow\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> góc AIE = góc ÀI
Mà góc AIE và góc AIF kề bù => \(\widehat{AIE}=\widehat{AIF}=90^o\Rightarrow AO⊥EF\) tại I
Áp dụng định lý Py-ta-go vào các tam giác vuông:
\(\Delta IAE\) có \(\widehat{I}=90^o\Rightarrow IA^2+IE^2=AE^2\left(1\right)\)
\(\Delta IAF\) có \(\widehat{I}=90^o\Rightarrow IA^2+IF^2=AF^2\left(2\right)\)
\(\Delta IOE\) có \(\widehat{I}=90^o\Rightarrow IE^2+IO^2=EO^2\left(3\right)\)
\(\Delta IOF\) có \(\widehat{I}=90^o\Rightarrow IF^2+IO^2=OF^2\left(4\right)\)
Cộng (1),(2),(3),(4) vế với vế ta được:
\(2\left(IA^2+IE^2+IO^2+IF^2\right)=\left(AE^2+EO^2\right)+\left(AF^2+OF^2\right)\)
\(\Delta AEO\)vuông ở E nên \(AE^2+EO^2=AO^2\) (5)
\(\Delta AFO\)vuông ở F nên \(AF^2+OF^2=AO^2\) (6)
Từ (5) và (6) => \(2\left(IA^2+IE^2+IF^2+IO^2\right)=AO^2+AO^2=2AO^2\) hay \(IA^2+IE^2+IO^2+IF^2=AO^2\) (đpcm)
A B C E F O F M D I 1 2 1 1 1 2 1 1 2 1
a) Gọi giao điểm của d và BC là F thì FB = FC. \(\Delta OFB,\Delta OFC\)vuông tại F có FB = FC ; OF chung
\(\Rightarrow\Delta OFB=\Delta OFC\left(2cgv\right)\)=> OB = OC (2 cạnh tương ứng)
\(\Delta OAE,\Delta OAF\)lần lượt vuông tại E,F có OA chung ;\(\widehat{A_1}=\widehat{A_2}\)(AO là phân giác góc BAC)\(\Rightarrow\Delta OAE=\Delta OAF\left(ch-gn\right)\)=> OE = OF (2 cạnh tương ứng)
\(\Delta OBE,\Delta OCF\)lần lượt vuông tại E,F có OB = OC ; OE = OF\(\Rightarrow\Delta OBE=\Delta OCF\left(ch-cgv\right)\)
=> BE = CF (2 cạnh tương ứng)
b) Kẻ BD // AC (D thuộc EF) thì\(\widehat{D_1}=\widehat{MFC};\widehat{B_1}=\widehat{C_1}\)(2 cặp góc slt)
AE = AF (2 cạnh tương ứng của\(\Delta OAE=\Delta OAF\)) nên\(\Delta AEF\)cân tại A
\(\Rightarrow\widehat{E_1}=\widehat{F_1}\)mà\(\widehat{D_2}=\widehat{F_1}\)(2 góc đồng vị của MD // AC)\(\Rightarrow\widehat{E_1}=\widehat{D_2}\Rightarrow\Delta BDE\)cân tại B => BD = BE = CF
\(\Delta MBD,\Delta MCF\)có\(\widehat{B_1}=\widehat{C_1};\widehat{D_1}=\widehat{MFC}\); BD = CF\(\Rightarrow\Delta MBD=\Delta MCF\left(g.c.g\right)\)
=> MB = MC (2 cạnh tương ứng) => M là trung điểm BC
c)\(\Delta IAE,\Delta IAF\)có AE = AF ; AI chung ;\(\widehat{A_1}=\widehat{A_2}\Rightarrow\Delta IAE=\Delta IAF\left(c.g.c\right)\)
\(\Rightarrow\widehat{I_1}=\widehat{I_2}\)(2 góc tương ứng) mà\(\widehat{I_1}+\widehat{I_2}\)= 1800 (2 góc kề bù)\(\Rightarrow\widehat{I_1}=90^0\Rightarrow AO⊥EF\)tại I
Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta IAE,\Delta IAF,\Delta IOE,\Delta IOF,\Delta AFO,\Delta AEO\),ta lần lượt có :
IA2 + IE2 = AE2 (1) ; IA2 + IF2 = AF2 (2) ; IE2 + IO2 = EO2 (3) ; IF2 + IO2 = OF2 (4) ; AE2 + EO2 = AO2 ; AF2 + FO2 = AO2
Cộng (1),(2),(3),(4),vế theo vế,ta có : 2(IA2 + IE2 + IO2 + IF2) = (AE2 + EO2) + (AF2 + FO2) (= 2AO2)
=> IA2 + IE2 + IO2 + IF2 = AO2
P/S : Câu a có thể chứng minh OB = OC như sau : O thuộc trung trực của BC nên OB = OC