K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

Ta chỉ cần chứng minh \(BD=CE.\)   (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).

Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)

Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)

Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)

Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)

Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\).        (1)

Theo tính chất tiếp tuyến

\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)

Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\)    (2)

Từ (1),(2) suy ra \(BD=CE\).

 

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

13 tháng 8 2023

Có cạnh là ABC

13 tháng 8 2023
avatar
  •  
  •  

  •  

  •  

 

        THAM KHẢO NHÉ. XIN LỖI VÌ KO TRÙNG ĐỀ

Giải thích các bước giải:

a.Gọi K là tâm đường tròn bàng tiếp trong góc A 

BK,CK→��,�� lần lượt là phân giác ngoài tại đỉnh B,C�,�

 Ta có (K)(�) tiếp xúc AB,AC��,�� lần lượt tại E,F�,�

AF,AE→��,�� là tiếp tuyến của (K)(�)

AF=AE→��=��

b.Vì (K)(�) tiếp xúc với BC�� tại DBC�→�� là tiếp tuyến của (K)(�)

Ta có BD,BE��,�� là tiếp tuyến của (K)BD=BE(�)→��=��

           CD,CF��,�� là tiếp tuyến của (K)CD=CF(�)→��=��

c.Ta có: 

AE+AF=(AB+BE)+(AC+CF)=AB+AC+(BE+CF)=AB+AC+(BD+DC)=AB+AC+BC=PAB

 

 

14 tháng 8 2023

okay :vvv