Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.
a)c/m AEBM là hinhhình thoi
b)gọi I là ttung đ của AM.c/m EIC thẳng hàng
c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình
Cụ thể như sau:
Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)
Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)=S(ACB)S(ANB), nghĩa là có câu a.
Mà có câu a thì có câu b
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC có
MN//BC(gt)
Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)
Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)
hay \(NC=\dfrac{16}{3}cm\)
Ta có: AM+MB=AB(M nằm giữa A và B)
nên AB=6+4=10(cm)
Ta có: AN+NC=AC(N nằm giữa A và C)
nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)
hay \(BC=\dfrac{50}{3}cm\)
Xét ΔABC có
MN//BC(gt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)
\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)
Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\); \(BC=\dfrac{50}{3}cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có MN//BC
nên AM/MB=AN/NC
=>NC=6(cm)
b: Xét ΔABC có MN//BC
nên ΔAMN∼ΔABC
Suy ra: \(\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2=\left(\dfrac{4}{7}\right)^2=\dfrac{16}{49}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC vuông tại A
BC2=AB2+AC2(định lí Py-ta-go)
⇒BC2=102+242
⇒BC2=100+576
⇒BC2=676
⇒BC2=\(\sqrt{676}\)
⇒BC=26(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(